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ABSTRACT
In this paper we present a novel approach of simulating
urban growth by utilising the computation power of mod-
ern GPUs. The simulation results can be used in urban
policy modelling to reduce turnaround times in the policy
cycle. We use a state-of-the-art agent-based simulation
model that consists of rules to describe human behaviour.
The simulation incorporates geospatial information such
as land-use, current population density and road network
data. In order to simulate the phenomena of urbanisa-
tion, in our model citizens more likely settle near roads
or existing settlements/cities. In this paper we present
our implementation that is based on the FLAME GPU
framework. Each agent on the GPU represents a group
of citizens at a specific location. In order to evaluate our
approach we present a practical use case. We measure
the performance of our implementation and compare it
with a Java-based solution. Finally, we discuss our ap-
proach and show opportunities for agile and interactive
urban policy modelling.

INTRODUCTION AND MOTIVATION
The term “urban sprawl” describes the problem of mod-
ern cities growing quickly resulting in wide-spread de-
velopments with a very low density. This often has neg-
ative effects on environment and therefore on people’s
health: more land is covered with buildings or streets;
public transport in suburbs is often not sufficiently devel-
oped and so citizens have to use the car to get to their job
or to the city centre which effectively leads to a higher air
pollution. Besides, urban sprawl may also affect the cul-
tural life and family life. People living in suburbs some-
times participate less in cultural events than people living
near the city centre. Long travels to work and back to
home reduce the time an employee can spend with his or
her family.

Urban planning and policy modelling therefore aim for
creating more compact but at the same time sustainable

and healthy cities. This development requires infrastruc-
ture changes that have to be well thought out. So, urban
planners more and more involve citizens in the discus-
sion about urban development plans in order to create a
city that is well received by everyone. They make use of
simulations based on geospatial information. Innovative
techniques such as 3D visualisation help urban planners
to present the simulation results to decision makers and
to the public.

Modern urban policy modelling deploys a so-called
policy cycle (see Krämer et al., 2013). Simulations and
3D visualisations are used to gain feedback from deci-
sion makers and citizens. This feedback can then be in-
corporated in new simulations which are presented to the
public again. This loop repeats until a general agreement
on the planning has been found. The shorter the feedback
cycle is, the faster a final decision can be made.

Creating such simulations is currently a time-
consuming task that may take several hours or even days
with existing solutions (see section “Performance” be-
low). Urban planners often make use of modern satel-
lite imagery to improve their calculations. For example,
satellite images or LIDAR data spanning several years al-
low urban planners to calculate urban growth and hence
to estimate future trends. The ongoing development of
sensor technology leads to more accurate data sets which
may be exploited to achieve better simulation results.
However, at the same time the volume of data to pro-
cess becomes larger and larger which makes them harder
to process with standard geospatial information systems
(GIS). Nonetheless, quickly creating simulations based
on such data sets is a crucial part for the urban policy
feedback cycle.

Modern computer architectures with multi-core CPUs
and GPUs allow for creating high performance applica-
tions (cf. Owens et al., 2007). However, current GIS so-
lutions do not fully take advantage of this yet. In prac-
tice, urban planners process raster data or point clouds
such as satellite images or LIDAR data respectively with
software tailored to simple workstations. In recent years
these workstations have evolved and already include so-
phisticated graphics hardware. With this hardware it now
becomes possible to not only create high performance
3D visualisations but also to make use of the thousands
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and millions of cores offered by a modern GPU to create
geospatial simulations.

Modelling the behaviour of citizens in an urban en-
vironment can be rather complex in that it is non-linear
and possibly chaotic. A lot of individual factors have to
be taken into account that make the model large and hard
to comprehend. Agent-based modelling (ABM) attempts
to simplify such problems. Agents are autonomous units
that act on their own, just like citizens. Modelling urban
life becomes a lot easier by considering only one citizen
or a group of similar citizens and by representing them
as individual agents. Modern graphics hardware allows
agent-based simulations to run on the GPU. So, it is pos-
sible to create high-performance simulations modelling
urban life on the graphics card.

To summarise, in order to create sustainable, compact
cities, urban planners deploy a feedback cycle that is
based on geospatial simulations. The shorter this cycle
is, the faster decisions can be made. However, geospatial
data—which provides the basis for such simulations—
becomes larger and larger and so simulations take more
and more time with current GIS technology. In this paper
we therefore present a new approach of interactively sim-
ulating urban development with modern GPU hardware.
We use agents to model real urban life. We describe our
implementation and evaluate its performance compared
to a pure Java application. We conclude with a final dis-
cussion on the applicability of our approach to a practical
use case, and we show opportunities for agile urban pol-
icy modelling.

RELATED WORK

Agent-based simulation has already been applied in the
area of geographical information systems (GIS). For ex-
ample, Gimblett proposes to model social and ecological
phenomena such as population dynamics, disease epi-
demics or urban growth with agents (Gimblett, 2002).
Gilbert and Troitzsch explain how to use the multi-
agent approach to perform social simulation including
population changes or business forecasting (Gilbert and
Troitzsch, 2005). Gebetsroither presents the MASGISmo
platform (Multi-paradigm Agent-based System Dynam-
ics GIS modelling platform) that he uses to simulate so-
cial behaviour, natural resources, land use change, or en-
vironmental changes (Gebetsroither, 2010). He claims
agents to be more appropriate to describe human be-
haviour than differential equations that try to model com-
plex system dynamics. On the other hand, strategic prob-
lems and long-term policy development also have an in-
fluence on urban development. Gebetsroither therefore
combines multi-agent simulation with elements from the
area of system dynamics. He also includes stochastic
variation to increase realism. This multi-paradigm ap-
proach is based on an idea by Scholl (Scholl, 2001).

The MASGISmo platform uses the RepastJ framework
which is a Java library that is able to perform agent-
based simulation using multiple CPU cores. RepastJ

does not exploit the possibilities of modern graphics
hardware. Although geographical information systems
(GIS)—such as MASGISmo and others—could make
great use of the performance gain offered by GPUs, this
possibility has not been fully exploited yet. However,
since the advantages of performing parallel computations
on the GPU have already been described (Owens et al.,
2007; Lupton and Thulin, 2008; Nickolls and Dally,
2010) there is some work trying to apply this approach
to GIS. Balz and Haala, for example, use GPUs to per-
form SAR (Synthetic-Aperture Radar) image interpreta-
tion in realtime (Balz and Haala, 2006). They implement
algorithms such as SAR rasterisation or LIDAR point tri-
angulation on the GPU. They state that their solution is
able to “simulate and visualise huge amounts of 3D data”
and that it is therefore “the best choice for simulating city
models” (Balz and Haala, 2006).

Combining the multi-agent approach with the advan-
tages of GPU-based calculation offers a great opportu-
nity for geospatial simulation. For example, Strippgen
and Nagel use GPUs to simulate urban aspects—in their
case traffic (Strippgen and Nagel, 2009). They use agents
to model human behaviour. In their algorithm each agent
has a certain plan for the whole day consisting of ac-
tivities and routes. An agent participates in the traffic
simulation when it moves from one activity to another.
Strippgen and Nagel are able to achieve a high perfor-
mance gain by using the GPU compared to a pure Java
solution.

There are a number of frameworks available that sup-
port agent-based simulation as well as GIS operations.
AnyLogic, for example, is a commercial solution de-
veloped by XJ Technologies (http://www.anylogic.de).
MASON (http://cs.gmu.edu/∼eclab/projects/mason) and
NetLogo (http://ccl.northwestern.edu/netlogo) are open
source products written in Java and Scala respec-
tively. Another open source solution is Repast
(http://repast.sourceforge.net) which is available for Java,
.NET and Python. Apart from that, there are libraries that
support spatial operations on the graphics card. CudaGIS
(Zhang and You, 2012), for example, offers the possibil-
ity to model geospatial primitives on the GPU but it does
not support agent-based simulations. There is currently
only one framework that supports both, agent-based sim-
ulation as well as GIS operations on the GPU. Its name
is FLAME GPU (http://www.flamegpu.com). It is an ex-
tension to the FLAME framework which was written in
C. FLAME GPU uses the same XML-based approach to
describe agents as FLAME, but runs the simulation on
the graphics card. In this work we hence use FLAME
GPU.

EXAMPLE USE CASE AND REQUIREMENTS

In this section we describe a simple, yet realistic use case
that we will utilise later to evaluate our approach. The
use case is about simulating the development of popula-
tion density in a certain area. Our test data set consists of



three rectangular grids in the ESRI ASCII grid file for-
mat. Each of them covers an area of 4300 × 2200 cells
with a precision of 100 meters per cell in both directions.
The first grid provides information on current land use.
Each cell contains a number that means a certain type of
land use—e.g. 1 for forest, 2 for river, 3 for building land,
etc. The second grid contains information about popula-
tion density. Each cell in this grid contains the number
of citizens living there. The third grid represents the road
network. A cell denoted with 1 contains a road whereas
a cell with a 0 does not.

While testing this data with pure Java applications
such as MASGISmo (see above) we observed the follow-
ing:

• Since performing an urban growth simulation with
existing tools takes a long time (often more than
several hours up to a few days) it cannot be used
well for agile and interactive policy modelling as it
is described above.

• Existing tools using agent-based modelling are only
able to manage a certain number of agents (depend-
ing on the system environment). Up to this num-
ber the performance typically increases, but beyond
this break-even point the simulation will actually
become slower.

• If the used data sets are large—even though the
number of agents is low—a single computation step
takes a noticeable amount of time.

These issues lead us to the following requirements:

• The user should be able to control parameters to in-
teractively affect the simulation results.

• Our implementation should be able to manage much
more agents as traditional implementations.

• It should significantly decrease the amount of time
needed for one simulation step.

SIMULATION MODEL
In order to let our simulation create realistic results,
based on the results from Gebetsroither we defined the
following rules (cf. Gebetsroither, 2010):

• At the beginning the population grows.

• If the population reaches a specific density, we as-
sume that from then on the population growth stag-
nates.

• We assume that citizens more likely settle near roads
and existing cities or settlements. So, the population
grows faster in these areas.

We use the information from the land use grid to let
citizens settle down on grid cells which are denoted as
building land whereas we do not allow citizens to settle

down on cells which are denoted as forest, river, etc. At
the beginning, we initialise our simulation with the con-
tents of the population density grid. Later this grid is
used to store population density changes—i.e. the simu-
lation results. The third grid containing the roads is used
for the last rule, namely that the population grows faster
near roads as well as existing cities and settlements. In-
formation on the latter is gained from the other two grids.

At the beginning we associate one agent to each popu-
lation grid cell. This agent represents the group of cit-
izens in this cell but not one particular citizen. This
works, because the population density grid only contains
abstract numbers about how many citizens live in each
cell. An agent is able to let the population density grow
or decline in its cell. Therefore it uses information from
neighbouring cells. We use the Moore neighbourhood
here, which means we only take direct neighbours into
account.

We first start with a randomly generated number of cit-
izens who want to settle down in the area. We let the
agents decide where these citizens settle down. They
do so with decreasing probability near roads and already
settled citizens. If a citizen settles down, the population
density in the respective cell will be increased.

In each simulation step a certain number of new cit-
izens are born. To simulate negative growth or stagna-
tion we introduce a mortality rate. If the birth rate is
higher than the mortality rate the overall population will
grow. Otherwise the overall population will decline. We
dynamically alter both rates so that the population first
grows and then stagnates.

The chosen model leads to a population growth in two
dimensions. On the one hand, if agents settle on new
cells the populated area will grow and new cities or set-
tlements will be founded. On the other hand, a growing
population density in a few single cells will lead to high-
rise buildings.

In our use case we want to simulate urbanisation and
so we do not model the aspect of citizens moving away
from the cities.

IMPLEMENTATION

In this section we present our simulation tool and how we
implemented it based on the FLAME GPU framework.

In order to load the input data into our tool we en-
hanced FLAME GPU to support ESRI ASCII grids in
addition to the standard XMML format containing the
simulation model. An ERSI ASCII grid consists of a
small header containing the grid’s size or resolution, a
so-called NODATA value and the geospatial location of
the covered area’s lower-left corner. The NODATA value
is used for all empty grid cells that do not contain a valid
value. It is typically negative whereas all other values
can be integers or floating point numbers. The values are
separated by a whitespace character. For our use case
we prefer ESRI ASCII grids over the XMML format al-
ready supported by FLAME GPU because our input data



is quite large and XMML is not designed for such an
amount of data. ESRI ASCII grids store values in a much
more compact way. Besides, the input data is already
available as ESRI ASCII grid files so we don’t have to
convert them.

In order to be able load the large grid files into memory
we split them into smaller chunks. The chunk size is
defined by the FLAME GPU memory model which relies
on a fixed number of agents that must be a power of two.
As described above, we use one agent per cell, so our
chunk size also has to be a power of two. FLAME GPU
requires the developer to define this number at compile
time. Splitting the grids into chunks allows us to use a
fixed number at compile time as well as to load grids of
arbitrary size.

In FLAME GPU agents are implemented as special
functions that are executed on the GPU. Such functions
are also known as CUDA kernels. Each simulation step
consists of two kernels that are called consecutively. In
the first kernel all agents send out a message containing
their state—i.e. the population density in their respective
grid cells. In the second kernel the agents decide whether
to let population grow or not and then update their inter-
nal state. To build up communication between agents we
use a Communicating X-Machine (COMX), a computa-
tion model provided by the FLAME GPU framework. A
COMX consists of several X-Machines—a model that
is similar to Finite State Machines (FSM)—that run in
parallel. These machines communicate by sending mes-
sages over communication channels called ports. COMX
are superior to pure Finite State Machines, because they
are able to cover dynamic and static aspects of a system.
In FLAME GPU messages sent by agents are saved to
a global message list that resides in the graphics card’s
global memory.

Listing 1 outlines the first kernel and listing 2 the sec-
ond one.

1 __FLAME_GPU_FUNC__ int ←↩
output_state(xmachine_memory_cell* xmemory, ←↩
xmachine_message_state_list* state_messages, ←↩
RNG_rand48* rand48)

2 {
3 // Add cell state to the global message list
4 add_state_message<DISCRETE_2D>( ←↩

state_messages, xmemory->color, ←↩
xmemory->population, xmemory->state, ←↩
xmemory->x, xmemory->y);

5 return 0;
6 }

Listing 1: The first CUDA kernel. Each agent sends its
state as a message to the global message list.

In listing 2 we first iterate through the global message
list. As described above, our simulation model requires
citizens to more likely settle down near neighbouring
roads and other citizens. So, we skip messages that are
not from our direct neighbours. Based on the information
received we then check if the current agent will increase
population in its cell or not. The agent finally updates its
internal state.

Figure 1: 3D visualisation of simulation results in our
tool.

1 __FLAME_GPU_FUNC__ int ←↩
update_state(xmachine_memory_cell* xmemory, ←↩
xmachine_message_state_list* state_messages, ←↩
int* color_table, RNG_rand48* rand48)

2 {
3 // Initialize
4

5 // Iterate through global message list
6 xmachine_message_state* state_message = ←↩

get_first_state_message<DISCRETE_2D>( ←↩
state_messages, xmemory->x, xmemory->y);

7 while(state_message)
8 {
9 // Messages sent by neighbours are treated ←↩

separately.
10 // Get next message
11 state_message = ←↩

get_next_state_message<DISCRETE_2D>( ←↩
state_message, state_messages);

12 }
13

14 // Is settling allowed on this cell?
15 // Increase or decrease population in this cell.
16 // Save new state.
17

18 return 0;
19 }

Listing 2: The second kernel. The agent first evaluates
all messages received from its direct neighbours. Then it
decides whether to increase population or not and finally
updates its internal state.

Our tool allows the user to interactively affect the sim-
ulation results. The user can change the population max-
imum for a single cell. That means if one cell reaches
a maximum number of citizens new ones that want to
settle there as well are redirected to neighbouring cells.
The user can also interactively alter the land use grid.
For example, he or she might declare a certain area as
building land where citizens can settle down. The inter-
action possibilities help urban planners in the aforemen-
tioned policy modelling feedback cycle. By letting the
user interactively change the simulation the feedback cy-
cle’s turnaround time can be reduced significantly.

Our tool contains a 3D visualisation of the simulation
results. The calculated population density is displayed
with blocks of different heights. The greater a cell’s pop-
ulation density is, the higher the respective block will be.
The cell’s colour depends on the actual land use—e.g.
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Figure 2: Subfigure (a) shows the number of milliseconds needed to perform a single simulation step on a grid chunk
with 512× 512 cells; (b) shows measurements for the complete grid with 4300× 2200 cells.
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Figure 3: Comparison of the executed CUDA kernels per second between the lab PC (a) and the notebook (b).

settlements are displayed in red, forest in green, etc. If
there is no population at all in a cell, it will be visualised
as a flat plane. Figure 1 shows a screenshot of our tool.
Scrolling over the grid, zooming in and out and freely ro-
tating the grid allows the user to inspect and analyse the
simulation results.

PERFORMANCE

In this section we present the results from evaluating
our tool’s performance based on time measurements and
deep profiling with the NVIDIA Visual Profiler. The per-
formance evaluation was executed on two computers:

• a lab PC equipped with an Intel Core i7 CPU, a
NVIDIA GeForce GTX 750 (1,280 MiB RAM), and
a NVIDIA Tesla C2075 GPU (5,375 MiB RAM);

• a notebook with an Intel Core 2 Duo CPU and
a NVIDIA Quadro NVS 150M GPU (255 MiB
RAM).

We evaluated two data sets: a single grid chunk with
512 × 512 cells and a complete grid with 4300 × 2200
cells. Figure 2 shows that only the simulation of the
whole grid on the notebook is not very fast (almost 7 sec-
onds per simulation step). The notebook’s GPU simply
has not enough computation power. But in comparison to



the plain Java application MASGISmo the results of both
computers are fine. On our notebook the Java application
was able to simulate about 100 agents in about 1 second.
It therefore needed more than 2,600 seconds to compute
a chunk with 512 × 512 cells. The GPU-based solution
only needs a tiny fraction of this, even on the notebook.

Figure 3 depicts the results of profiling our implemen-
tation with the NVIDIA Visual Profiler. It shows that
on the lab PC the GPU is not fully used to its capacity.
It very often has to wait for more data to be transferred
from the computer’s main memory to the graphics card’s
memory. Performance can be improved by putting data
transfer and simulation into separate streams that run in
parallel. Nevertheless, this approach would not lead to
much benefit on the notebook. In order to gain compara-
ble results on both computers we did not implement this.
An approach which dynamically splits up a grid depend-
ing on the size of the graphics card’s memory could help
to achieve optimal and scalable results on a given PC.

CONCLUSION

In this paper we described a novel approach of simu-
lating urban growth using modern GPU hardware. We
presented our simulation model which is based on rules
that mimic the properties of urbanisation. In this paper
we also presented a practical use case for our approach.
We were able to show that it works well with the given
data set. Also, we evaluated our implementation’s per-
formance and compared it to the existing Java application
MASGISmo. Although the Java solution also uses agent-
based modelling, our implementation is a lot faster. This
has two reasons: a GPU is able to process a lot more
agents within a single computation step than a CPU; and
due to a GPU’s superior computational power a simula-
tion step takes much less time.

As a first step towards agile and interactive policy
modelling our implementation allows the user to change
the maximum number of citizens per cell and to alter cur-
rent land use. These interaction possibilities are based
on realistic procedures in urban planning. Restricting
the number of citizens per cell corresponds to limiting
the maximum number of stories for a building. Altering
the land use grid corresponds to reassigning area usage
types—for example, from agricultural land to building
land.

Current GIS systems are not able to fully exploit the
possibilities of modern computer hardware yet. Our
GPU-based approach can be used to significantly speed
up processing geospatial data. In particular, urban
growth simulations can be performed in much less time.
As shown above, our simulation only needs a tiny frac-
tion of the time needed by MASGISmo. This opens up
the possibility for real agile urban policy modelling that
includes urban planners as well as stakeholders such as
decision makers and even the public into the discussion.
The fast turnaround time allows urban planners to deploy
a feedback cycle that consists of planning, simulating,

presenting the plan and the simulation results to the au-
dience, and finally gaining feedback. This cycle repeats
until a sustainable solution is found that is well received
by every stakeholder. Moreover, the interaction possibili-
ties in our implementation allow stakeholders to simulate
different urban planning scenarios and to directly discuss
about them.

In this paper we only presented a single use case for ur-
ban growth. We also tested only one raster data set. How-
ever, geospatial applications typically have to deal with
many heterogeneous use cases and requirements as well
as with lots of different data exchange formats. Apart
from that, our simulation model only uses one modelling
technique (agent-based modelling). MASGISmo on the
other hand uses a multi-paradigm approach to increase
realism—which by the way contributes only a little to
the bad performance of this pure Java solution. Nev-
ertheless, the results presented in this paper show that
there’s a lot of potential to make use of GPUs and agent-
based modelling in geospatial applications. In particu-
lar, we think that our approach can be applied to other
urban planning scenarios as well—for example, traffic
simulation (Promnoi et al., 2009; Strippgen and Nagel,
2009; Caceres, 2012) or pedestrian and crowd simulation
(Richmond and Romano, 2008; Passos et al., 2008).
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