

Project number: 288577

Project acronym: UrbanAPI

Project title: Interactive Analysis, Simulation and Visualisation Tools for Urban

Agile Policy

Instrument: STREP

Call identifier: FP7-ICT-2011-7

Activity code: ICT-2011.5.6 ICT Solutions for governance and policy modelling

Start date of Project: 2011 -09 -01

Duration: 36 month

Deliverable reference number and title (as in Annex 1): D3.3 Rule User Interface Documentation

(updated version)

Due date of deliverable (as in Annex 1): 15/30

Actual submission date: see ñHistoryò Table below

Revision: 010

Organisation name of lead contractor for this deliverable:

Fraunhofer IGD

Project co-funded by the European Commission within the Seventh

Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the

Commission Services)

RE Restricted to a group specified by the consortium

CO Confidential, only for members of the consortium (including the

Commission Services)

Rule User Interface Elements Documentation

2/54

Title:

Rule User User Interface Elements Documentation

Author(s)/Organisation(s):

Michel Krämer, Andreas Stein, Robert Gregor, Christian Malewski / Fraunhofer IGD

Working Group:

WP3

References:

D3.5 Data integration components

Short Description:

This report describes the implemented user interface for rule editing. Rule-based systems are used for various

purposes within the project. The report discusses existing solutions (state of the art) and how they can be adapted for

the project. It also describes the motivation behind using rule-based systems. This is the second version of this report

with a new section 9 describing an interactive web-based rule editor as well as the added section 8.6 explaining the

relation of this document to the Vienna and Ruse scenarios.

Keywords:

Rule-based system, production rules, domain-specific languages, human-machine interaction

History:

Version Author(s) Status Comment Date

001 Michel Krämer New Created document with initial layout 2012-11-06

002 Andreas Stein rfc Added description of graphical rule

editor in CityServer3D AdminTool and

rule execution example

2012-11-13

003 Michel Krämer rfc Added sections 1, 2, 3, 4, 6, 7, 8 2012-12-14

004 Robert Gregor rfc Revised section 4.1 + minor fixes 2012-12-19

005 Michel Krämer Final Revised document based on comments

from internal review

2013-01-14

006 Michel Krämer Final Revised document based on review

comments:

¶ the state of the art in rule-based

languages and rule editors: see

sections 5.3 and 5.4

¶ identification of the entities to be

2013-09-08

Rule User Interface Elements Documentation

3/54

used to build the rules: see

ontologies in sections 8.1.3 and

8.1.4 as well as summary in

section 8.4

¶ identification of the operators to be

applied to a single entity as well as

between the entities: see

section 8.4

¶ examples of rules for data

integration, data processing, visual

preparation and policy modelling:

see example DSLs in sections 8.2

and 8.3 as well as data integration

example in section 6.4

Second version of the deliverable updated in PM30

007 Christian Malewski Updated

version PM 30,

rfc

Added section 9 about new web-based

rule editor

2014-07-22

008 Michel Krämer Updated

version PM 30,

rfc

Revised document based on review

comments:

¶ Added section 8.6 as an

answer to reviewer comments

2014-07-30

009 Christian Malewski Updated

version PM 30,

final

Revised document based on review

comments.

2014-08-29

010 Michel Krämer Final Updated short description on page 1 2014-08-30

Review:

Version Reviewer Comment Date

004 Helmut Augustin See quality assurance form 2013-01-07

004 Wolfgang Loibl See quality assurance form 2013-01-09

006 Wolfgang Loibl,

Helmut Augustin

Comments in track changes 2013-24-09

007 Wolfgang Loibl,

Helmut Augustin

Comments in track changes 2014-08-26

008 Wolfgang Loibl,

Helmut Augustin

Comments in track changes 2014-08-28

Rule User Interface Elements Documentation

4/54

Table of contents

Table of contents .. 4

About this document ... 6

1 Introduction and motivation .. 6

2 Motivation for domain-specific rule languages .. 10

3 Scientific problems ... 11

4 User benefits .. 12

5 State of the art ... 13

5.1 Rule-based systems .. 13

5.2 Domain-specific languages .. 18

5.3 Rule languages .. 21

5.3.1 Artifical intelligence .. 21

5.3.2 Rule markup languages ... 22

5.3.3 Object-oriented rule languages .. 23

5.4 Graphical rule editors ... 25

5.4.1 Summary ... 29

5.5 Graphical editors in the geospatial area ... 29

6 The CityServer3D’s Graphical Rule Editor ... 31

6.1 CityServer3D – AdminTool ... 31

6.2 Graphical rule editor ... 32

6.3 Recipes .. 34

6.4 Example: Cologne ... 35

7 Some words on granularity .. 38

8 Policy modelling rules .. 38

8.1 Ontology modelling .. 39

8.1.1 Ontology analysis for the 3D VR scenario in Vitoria-Gasteiz .. 40

8.1.2 Ontology analysis for the 3D VR scenario in Bologna .. 40

8.1.3 Ontology model for the 3D VR scenario in Vitoria-Gasteiz ... 41

8.1.4 Ontology model for the 3D VR scenario in Bologna ... 42

8.2 Sample scripts and rules for the 3D VR scenario in Vitoria-Gasteiz 43

8.3 Sample scripts and rules for the 3D VR scenario in Bologna ... 43

8.4 Identified entities and operations.. 44

8.5 Conclusion ... 46

8.6 Ontologies and DSLs for other scenarios ... 47

9 DSL/Ontology Rule Prototype .. 48

9.1 Concepts and relations .. 49

9.2 Data properties and measurement units .. 50

Rule User Interface Elements Documentation

5/54

9.3 Comparison expressions ... 50

9.4 Variables .. 51

9.5 Connection to the 3D city model .. 51

9.6 Relation to other ontologies ... 52

10 Conclusion ... 52

11 References .. 53

Rule User Interface Elements Documentation

6/54

About this document

Rule-based systems are used for various purposes within the urbanAPI project: to resolve conflicts

during data integration, to prepare and edit data, to change visual attributes prior to presentation

and to enforce policy rules during policy modelling processes. Domain-specific languages (DSLs)

can help the user to easily declare his own rules.

This document contains an overview over existing rule-based systems (state of the art) and how

they can be adapted for the project. It will also describe the motivation behind using domain-

specific languages for rule-based systems. Furthermore, it describes the rule editing user interface

developed for the UrbanAPI project. This document finally gives an outlook on what will be

developed in the future in the UrbanAPI project.

The document will have two versions. A second, revised version of this document is planned for

PM 30. The final version of this document will contain all user interface elements, a description of

the new language IDE for textual DSLs as well as the scientific work conducted.

1 Introduction and motivation

Urban planning aims to manage the territory in order to address the key political concerns of

European citizens, including climate change, greenhouse gas emissions, uncontrolled urban

sprawl, urban health, traffic, noise, energy consumption and biodiversity loss etc. However, this

presents major challenges for urban planners and politicians as cities are extremely complex

systems, and the various drivers of change, impacts and responses are strongly interrelated,

support, alter or compete with each other.

Indeed the effective governance of the cities and city regions of Europe towards smart cities today

is fundamentally undermined by this urban complexity, whereby the high degree of

interconnectedness and multiple interactions between socio-economic and environmental factors

in a territorial context create major barriers to the effective implementation of sustainable urban

development.

ICT enabled governance of cities offers substantial opportunity for the application of enhanced

intelligence in urban management, to overcome barriers to sustainable development. This can be

achieved by enhanced assessment of urban complexity, improved decisionȤmaking support, all

facilitating the delivery of more sustainable compact cities. Moreover the wider potential of ICT

enabled urban governance is evident in the ability to simultaneously achieve effective management

of the complexity of the city, and engage citizens in defining their urban futures.

Rule User Interface Elements Documentation

7/54

The UrbanAPI tools will provide advanced ICT-based intelligence in three urban planning contexts.

First, directly addressing the issue of stakeholder engagement in the planning process by the

development of enhanced virtual reality visualisation of neighbourhood development proposals.

Second, at the city-wide scale, developing mobile-device location data based applications that

permit the analysis and visual representation of spatial activity across the territory of the city and in

relation to the various land-use elements of the city. Finally, developing simulation tool applications

in the city-region context addressing multiple challenges in responding to the simultaneous

demands of both expanding city populations for certain European cities, and declining and

frequently ageing populations elsewhere.

These three contexts have common requirements (see project deliverable D2.1) which lead to a

general processing chain. This chain consists of four steps: data integration, data processing,

visual preparation, and visualization for policy modelling. All scenarios from deliverable D2.1 deal

with different heterogeneous data sources that have to be integrated into one data set. For

example, for the city of Vitoria-Gasteiz building footprints, LIDAR data, zoning maps and the

municipality’s tree cadastre have to be merged into a single scene. In most of the scenarios the

data has then to be processed. For example, in Vitoria-Gasteiz the building footprints have to be

extruded to 3D objects based on metadata and information derived from the LIDAR data set. After

these first two steps, the information has to be visualized. This often includes a pre-processing

step where the visual attributes of the 3D objects in the scene will be altered. In Vitoria-Gasteiz, for

example, the different areas from the zoning maps have to be displayed in specific colours. Finally,

the scene will be visualized in order to conduct policy modelling.

Data
integration

Data
processing

Visual
preparation

Visualizing/
Policy modeling

The four steps in the processing chain highly depend on the specific scenario—i.e. user

requirements—and the actual data being processed. Therefore the ICT tools developed in

UrbanAPI need to be highly configurable. There are various ways to achieve this:

¶ Special tools could be developed that are customized to the specific scenarios identified in

this project. If done appropriately, these tools will of course fulfil all user requirements.

However, they will be specialized for the UrbanAPI use cases only, and it will not be

possible to use them for other scenarios in the future as well.

¶ The tools could be made configurable to a certain degree. This would, for example, include

the colours for areas in zoning maps, and other parameters. This solution would be much

Rule User Interface Elements Documentation

8/54

more flexible than the first one, but only parameters identified in this project could be

included. As described above, geo data processing highly depends on the user’s needs,

the scenario and the data to be processed. A more generic solution which is able to

process arbitrary data and to fulfil user requirements that have not been identified in this

project yet is hence needed.

¶ The third solution is based on rule-based systems. These systems allow the user to

declaratively specify how the data should be processed. This is the most flexible

alternative. The user defines rules which consist of a condition (also known as “left-hand

side”) and a conclusion (sometimes called action or “right-hand side”). A rule’s left-hand

side is used to select objects with certain attributes from the data set—e.g. all areas from

the zoning map that represent streets. The right hand-side contains actions that operate on

the selected objects.

With a rule-based system the dynamic parts of the software can be described with production rules

that are on the one hand highly adaptable to the application domain and on the other hand can be

changed during runtime. So, they do not need the software developer to recompile the whole

system, especially when just a small part of the process has changed. Rule-based systems have

shown to be powerful enough for processes such as data integration (Thum & Krämer, 2011),

(Reitz, Krämer, & Thum, 2009) or even data validation and quality evaluation (Coors & Krämer,

2011), (van Oosterom, 2009). Since rule-based systems have been used for quite some time in the

area of artificial intelligence and machine learning, they are already quite mature (Forgy, 1982),

(Miranker, 1987), (Doorenbos, 1995). The following paragraphs describe how the four processing

steps can benefit from rule-based systems.

¶ Data integration. Geospatial data sources are typically quite heterogeneous. There are a

number of data exchange formats and different schemas. Data sources often have been

created with different tools and been processed in various ways. This makes the data

integration process rather complex. It greatly depends on the data to be processed. In order

to support a wide range of data sources, a quite flexible system is needed that can be

customized by the user without requiring the software vendor to change or extend the GIS.

Rule-based systems can be of a great help here, because rules can be specified by the

end-users directly in the GIS. The declarative style of production rules allows for a much

better readability than a general purpose scripting language would do (see discussion

below).

¶ Data processing. This step is about processing the data that has been integrated in the

first one in order to derive new data. This step depends on the user’s requirements which

may be different in each project or application the user is working on. With a GIS that uses

Rule User Interface Elements Documentation

9/54

a rule-based system and that is therefore highly configurable, the user can define

automated processes that meet these requirements. For example, in Vitora-Gasteiz

building footprints have to be combined with the terrain model and LIDAR data in order to

derive 3D building models. With the system developed in this project the user can define an

automated process that calculates a building’s height at a certain position using the LIDAR

data and then extrudes the footprint to the correct block model (see example in section

6.4).

¶ Visual preparation. Rules can also be very helpful in this step. For example, the following

rule could be used to colorize all roofs red:

when

 there is a roof r

then

 set color of r to red

This step can also make use of a production rule system’s forward chaining (see discussion

below):

when

 there is a plane e and

 the normal vector of e points upwards

then

 e is a roof

when

 there is a roof e

then

 set color of e to red

These two rules will be executed one after another. To be precise: firing the first rule which

infers that a plane whose normal vector points upwards is a roof will automatically make the

second rule fire as well. This process is called forward chaining. The language used here is

a domain-specific language (see section 5.2), that means a language that is tailored

towards a very specific application domain. Such a language could contain terms like

“points upwards” which have to be defined elsewhere. For example, “points upwards” could

mean that the angle between the plane and the coordinate system’s X-Y-plane is lower or

equal than 45°.

Rule User Interface Elements Documentation

10/54

¶ Policy modelling. Rules can also be used during interactive policy modelling. For

example:

when

 there is a waste bin w and

 there is an circular area c with a radius of 2 kilometres around w and

 the number of waste bins within c is less than 20

then

 alert us er

For a more complete discussion on policy modelling rules see section 8.

2 Motivation for domain-specific rule languages

In the urbanAPI project, domain-specific languages (DSLs) will be used to allow domain experts

without a background in computer science to define their own rules. Krämer motivates the use of

DSLs for rule-based systems as follows (Krämer M. , 2013): “Rule-based systems in their current

form can be quite useful in the applications described above, but they can also be rather hard to

understand for non-IT personnel. Rule definition languages are currently rather complex. The user

should have some experience in programming. He or she is also often expected to have a deep

understanding of internal matters—i.e. data models the rules will operate on, algorithms, etc.

Handling all these details keeps him or her from focusing on the actual problem.”

This is somewhat contradictory to the purpose of rule-based systems. Since production rules are

described in a declarative way, they should allow the user to focus on what should be done and not

how. However, rule-based systems are not tailored to one specific application. They rather try to be

generic and flexible. This flexibility leads to several issues. For example, rule-based systems allow

for a technique called rule chaining: knowledge inferred from executing one or more rules may lead

to other rules being fired. This technique can lead to a network of dependent rules which can

quickly become overly complex even for use cases that appear to be simple at first glance. Apart

from that, improperly defined rule conditions can make pattern matching very slow when the

system is forced to search the knowledge base linearly or to even build cross products of facts.

Current production rule systems such as Drools1 or JESS2, for example, also do not make use of

application-dependent specifics. For example, in the geospatial domain spatial indexes (R-trees,

1 http://www.drools.org
2 http://www.jessrules.com

Rule User Interface Elements Documentation

11/54

quad-trees, etc.) can be used to search the knowledge base a lot faster than it would be possible

with a general purpose inference algorithm such as RETE. Furthermore, rule-based systems do

not provide a common set of functions for specific applications—they rather leave it up to the user

to define functions on his own using a general purpose programming language.

Rule languages often try to reflect the flexibility and generic nature of the underlying rule-based

system. Hence, it's common to use general purpose languages for rule declaration as well. For

example, JESS and Drools use LISP and Java respectively. Drools attempts to make the

declaration of rule conditions a little bit easier by providing a Java dialect called MVEL which is

specifically designed for conditional expressions. However, regardless of how simple rule

languages seem to be structured at first glance, as soon as they reflect the full flexibility of the

underlying system they become so-called turing tarpits, which means they allow for everything—

hence they are turing complete—but are hard to learn and too complicated for even simple tasks

(Perlis, 1982). A famous example for a turing tarpit is XSLT which has been designed for model

transformation but is also turing complete. The use of general purpose languages for rule-based

systems like it has been done in JESS or Drools does not make the situation much better.

Although performing simple tasks is easier with a general purpose language, their genericness is

usually not very conducive, especially when the rule-based system is used in a single application

domain for very specific use cases.

The language used to define rules is the main interface between the user and the rule-based

system. In order to hide the system's complexity, the rule language should be designed for a single

application domain instead of being too generic. It should on the one hand have a reduced

vocabulary, but should also be powerful enough to solve problems within this single application

domain very easily. Such a language is usually called Domain-Specific Language or DSL. There

are two forms of DSLs: internal and external ones. In this project, we focus on external DSLs which

can be designed independently of any implications of a host language. In the following, the term

DSL is hence used synonymously with external DSL.”

3 Scientific problems

Before DSLs can fully be used in UrbanAPI some problems have yet to be solved. First of all,

methods have to be developed which allow domain-specific languages to be created with the

following properties:

¶ The languages have to be based on user requirements and it has to be made sure they are

targeted to the respective application domain.

Rule User Interface Elements Documentation

12/54

¶ A DSL has to be expressive enough, so problems from this application domain can be

solved in an easy manner

¶ The language must not be too flexible, so domain experts can still handle it. Turing-tarpits

should also be avoided.

One of the most important aspects here is decoupling the technical details from the actual problem

description. Furthermore, while designing a DSL, one has to find a balance between the

language’s expressiveness and its flexibility. If single expressions (tokens) are too expressive and

the vocabulary is too limited, the language will be rather inflexible. This means it can only be used

in a very specific application and probably only in one very specific use case. On the other hand,

the more flexible the language is, the more complicated it becomes for the domain expert to use.

4 User benefits

Domain-specific languages in urbanAPI make it a lot easier for domain experts without a

background in computer science to create automated processes. Krämer summarizes the benefits

of domain-specific languages for the user as follows (Krämer M. , 2013): “Compared to general

purpose languages, DSLs have a very limited vocabulary. Instead, they are tailored to a specific

application which makes them very easy to understand for the domain expert. The GIS user will be

able to write custom scripts (i.e. rules) without being required to have a strong background in

computer science. If use cases become too complex, the domain expert can still engage an

external service provider to write the rules. However, the communication between the domain

expert and external service provider will be a lot easier, since rules written in the DSL are more

readable and thus easier to understand. Hence, the risk to get rules from the external service

provider which do not meet the user’s requirements will be tremendously reduced.

Domain-specific languages typically have a small vocabulary, but single expressions can be very

elaborate. Defining processes for data integration, visual preparation, etc. will be much easier

since the domain expert does not have to think about how to do something, but more about what

should be done. So, he or she will work on a very abstract level without being required to cope with

technical details. This has the following advantages:

¶ Scripts (i.e. rules) will be more readable and understandable. The actual problem can be

much better described in this abstract way. Implementation details which would make the

script a lot more complex can be omitted.

¶ The system can be updated or even replaced (e.g. if new algorithms should be added or if

the general environment has changed) without requiring the scripts to be changed.

Rule User Interface Elements Documentation

13/54

¶ Decoupling technical details from the problem may allow the same scripts to be applied to a

different application (or use case within the same domain). This increases reusability.”

5 State of the art

5.1 Rule-based systems

In this section we compare different approaches that allow rule-based expert systems to be

created. We compare the production rule system Drools with two semantic web technology

frameworks—in particular we choose Sesame and Apache Jena. All three frameworks are

available under an Open Source License and for all of them there are several offerings for

commercial support.

Besides these three frameworks, there are also other alternatives—for example CLIPS, JESS or

even the logic programming language Prolog. It is also possible to replace or supplement certain

parts in a semantic web technology stack by other libraries such as different Triple Store back-

ends, entire Triple Store implementations, Query Engines, OWL implementations or RDF Schema

and OWL reasoners, as well as additional forward, backward or hybrid chaining reasoners3.

However, Drools, Sesame and Jena are the ones which are among the most mature, are regularly

updated provide reasonable documentation and have a quite strong community.

Drools is a Java centric production rule system. Its rules are defined in a text based form and are

evaluated and compiled to Java Bytecode at runtime. While Drools has initially been developed

with a focus on forward chaining, there is growing support for backward chaining as well.

Compared to forward chaining, backward chaining is a process where the user describes a certain

condition and the expert system uses rules to find facts that led to this condition (for example, a

doctor describes a patient’s symptoms and then lets the expert system search for possible

diseases).

Drools uses its own rule definition language. For the right-hand side of rules, general purpose

languages such as Java, Groovy, Python, etc. can be used. Also, the framework also already

contains a mechanism to create DSLs. However, this mechanism simply works with ‘search’ and

‘replace’ in order to map DSL expressions to expressions in the Drools rule language. This is

extremely inflexible and only allows a very limited set of DSLs since you’re always bound to the

3 e.g. there are several pluggable reasoners for Apache Jena Jena Framework

Rule User Interface Elements Documentation

14/54

constraints of the host language. A complete compiler/interpreter for an external DSL allows for

much more, easier to understand languages.

Since Drools rules allow direct access to arbitrary Java objects as well as method invocation. A

Drools rule-based system can thus read and write its state (i.e. facts) directly to an arbitrary Java

Model4, without the need for custom integration or wrapping code. Besides Drools, there is no

alternative implementation that can be used in conjunction with an existing set of Drools rules.

While this might be a drawback in terms of interoperability for some use cases, it also offers large

benefits in terms of development productivity and simplicity of use in scenarios if there is no

requirement to directly access or evaluate the production rules by other systems5. Production rules

in Drools are triggered by events. This allows forward chaining to be implemented quite easily. In

UrbanAPI events can also be of great use for interactive policy modelling. Whenever the domain

expert changes a parameter, an event can be triggered which will make the production rule system

evaluate the scene again (for an example use case, please have a look at section 8). Event-based

forward chaining and interactive modelling hence complement each other quite well.

Sesame is an extendable RDF Triple Store and RDF Schema inferencing system that can be

queried using SPARQL. Both facts and rules are stored inside an RDF Graph. These facts can be

read and written6 through direct use of a Java API or through SPARQL queries which can

themselves be passed to the Java API as query strings or by transmitting SPARQL queries over an

HTTP connection. RDF can be serialized to various text based formats and is not dependent on

any specifics of a programming language, runtime environment or even specific API. This leads to

easy integration and interoperability among heterogeneous systems. Facts, rules and queries can

be easily shared or reused among components developed on entirely different technology stacks

and platforms. A rule-based system implemented on top of Sesame can also distribute its

knowledge base across multiple nodes in a network which can be especially useful for large

datasets that do not fit into main memory or for seamless integration of third party RDF data that is

hosted on external systems. However such a system cannot read and write its state transparently

to an existing Java Business Model without the need to develop additional integration or wrapping

code since the existing model has to be mapped to a RDF triple based representation. Sesame

provides a built in backward-chaining reasoner that can inference new facts by relying on RDFS

rules and facts stated in RDF. RDFS does allow the expression of common vocabularies and

taxonomies that consist of classes, object- and data properties. However there is no support for

value and cardinality restrictions or even rules involving first order logic. Thus, RDFS backward

chaining on its own doesn’t fit our requirements within UrbanAPI. However there are several other

4 such as the Common Data Model of the CityServer 3D, see D3.5 Data integration components
5 i.e. systems not running inside a Java Runtime Environment or running on an outdated JRE
6 Write support is introduced by SPARQL 1.1 and implemented by recent Sesame releases

Rule User Interface Elements Documentation

15/54

alternative ways to support more complex rules and reasoning on top of Sesame. The first would

be to extend Sesame by customized functions that are implemented in Java. These functions can

then be referenced inside FILTER clauses of SPARQL queries and used as a simple yet flexible

and extensible form of backward-chaining7. However it shares some of the drawbacks of a Drools

based approach since these functions are implemented in Java and specific to Sesame. So while

their syntax and semantics can be formally specified8 and they can be used by standard SPARQL

clients without additional effort they have to be implemented as individual extensions for each

SPARQL Query Engine they should be used with.

Sesame in comparison to Drools does not offer built-in facilities for custom DSLs. Though

SPARQL is itself already a DSL, it is obviously designed as a query language for Triple stores,

similar to SQL for RDBMS.

There are some efforts going on to build user interfaces for semantic queries that are a lot easier to

understand than mere SPARQL. For example, in the FP7 project TELEIOS9 a Visual Query Builder

UI is created which translates graphical elements to SPARQL queries. However, even though this

system is rather easy to understand for users having some background in the referenced domain,

it largely reflects the WHERE clause of a SPARQL query and is intended for information retrieval

and not for policy modelling.

Jena is a more complex semantic web framework than Sesame. Besides offering roughly all the

features of Sesame, it provides built in support for backward-chaining OWL lite reasoning10. OWL

lite is a standardized format that can be used in a similar fashion as RDFS to declare rules for an

RDF dataset. Besides the definition of classes as well as data and object properties there is

support for value and cardinality constraints on properties. But in contrast to OWL full or OWL/DL

there is no support for first order logic constraints. Within the UrbanAPI project, it is very likely that

this wouldn’t fit the requirements for an efficient implementation of a concise high-level DSL.

The first solution to circumvent this issue is to combine the built-in OWL lite reasoner with SPARQL

queries as described above.

The second solution would be to integrate a more powerful reasoner such as the Pellet OWL 2

reasoner that supports OWL DL backward-chaining reasoning. There are even solutions that

7 e.g. this is done in the FP7 TELEIOS project to implement stSPARQL and GeoSPARQL support,
which both extend SPARQL with spatial / topological backward-chaining reasoning support on top
of Sesame. See http://www.strabon.di.uoa.gr/
8 as done for stSPARQL and GeoSPARQL
9 http://www.earthobservatory.eu/
10 At the time of writing there is no stable direct support for the current OWL 2 standard in Jena

Rule User Interface Elements Documentation

16/54

provide forward-chaining on top of Jena and Pellet such as DLEJena11, but after a brief evaluation

their adoption, code maturity, backing community and documentation render their use at least

questionable within the scope of this project.

A third solution would be to use the general purpose rule engine which is also provided by the Jena

Framework. This engine can work on RDF datasets and rules which are expressed in a custom,

Jena specific syntax. Backward-chaining, Forward-Chaining and combinations of both are

supported. However these custom rules share the same drawbacks as a Drools based approach,

as they are specific to Jena without any alternate implementations.

As mentioned for Sesame, Jena also does not allow direct interaction with a previously existing

Java Model (i.e. that of CityServer3D). Given the fact that there are no plans for integrating any

third party RDF data within the project, using Jenas general purpose rule engine does not seem to

provide any tangible benefit over Drools.

After this high level comparison we are now going to compare two low-level examples of notation

specifics of Drools based forward chaining and a hybrid combination of SPARQL queries and OWL

DL backward-chaining reasoning as a rather minimalistic approach that is independent of the

specifics of a certain SPARQL Query Engine or OWL reasoner implementation.

¶ Drools production rules that are used for forward-chaining have the form

 when <condition> then < conclusion or action>

For example, the following rule adds all facts from the knowledge base that have the type

‘Person’ and whose attribute ‘age’ is lower than 10 to the global list ‘children’.

 when p : Person (age < 10) then children.add(p);

Since production rules are event-based, one can use forward chaining to define workflows:

 when p : Person (age < 10) then children.add(p);

 when c : Person () from children then System.out.println(

 c.name + ® is a child¯);

11 http://lpis.csd.auth.gr/systems/DLEJena/

Rule User Interface Elements Documentation

17/54

¶ The following example in OWL DL / SPARQL will essentially do the same as the production

rules above but this time using backward chaining (instead of printing out “is a child” to the

command line it will simply select all children; actions such as ‘println’ cannot be used in

SPARQL queries).

(OWL rule, Manchester notation):

 Class: Child

 SubClassOf:

 Person

 EquivalentTo:

 hasAge exactly 1 xsd:integer[>= 0 , < 10]

(SPARQL query):

 SELECT ?c

 WHERE {

 ?c rtf:type :Child .

 }

The following table summarizes the features that are important for the UrbanAPI project and how

they are implemented in Drools or could be using a combination of SPARQL and OWL that is

independent of the programming language environment and a specific SPARQL Query Engine or

OWL Reasoner implementation.

 Drools SPARQL Query Engine +

OWL Reasoner

Triggers Events Queries

Chaining Forward (backward possible in

latest version)

Backward (simple forward

chaining possible through

SPARQL INSERT queries)

Data store In-memory knowledge base Triple store, either in memory,

file-based, backed by DBMS or

distributed across network

Data model POJOs RDF Triples

To conclude, workflows as they are needed in geospatial data processing can be described very

Rule User Interface Elements Documentation

18/54

well with production rules and forward chaining. Apart from that, event-driven workflows support

the project’s requirements. Nevertheless, Drools can only reason about data which is already in

memory, whereas a semantic web based approach could potentially access larger data sets that

could even be spread across different machines. However, the integration components built into

the CityServer3D framework which is used in this project compensate this drawback. In UrbanAPI

we therefore decided to use Drools.

5.2 Domain-specific languages

Krämer, Ludlow and Khan summarize the state of the art in domain-specific languages as follows

(Krämer, Ludlow, & Khan, 2013): “In computer science domain-specific languages are used for a

number of purposes. For example, in the UNIX operating system configuration files have been

written in custom languages for quite some time. In agile software development domain-specific

languages are used to quickly adapt to changing user requirements. In recent times, DSLs have

gained a lot of interest, especially in the scientific community. One of the most actively pursued

topics is DSL design.

Mernik et al. differentiate between five phases of DSL development: decision, analysis, design,

implementation and deployment (Mernik, Heering, & Sloane, 2003). The analysis phase is one of

the most important ones since it includes specifying user requirements. Mernik et al. identify three

common ways to develop a new DSL:

¶ The DSL will be implemented based on an existing language which will be included

completely. Internal DSLs are an example for this case.

¶ An existing language will be limited to the means needed for the application domain.

¶ Application-specific vocabulary and language constructs will be added to an existing

language.

Apart from that, DSLs can of course be developed from scratch as well (like most external DSLs).

In the book "Domain-Specific Languages" Martin Fowler describes a number of methods for

developing language parsers (Fowler, 2010). Barrientos and Lopez present a new approach to

DSL design by using functional programming combinators as well as the composite pattern from

object-oriented programming (Barrientos & Lopez, 2009).

Since DSLs are used more and more often in modern software systems, there's a growing need for

language maintainability. DSLs ought to help reducing maintenance costs in large software

systems, but this can only work if maintaining the DSLs itself is not too costly. Pizka and Jürgens

therefore introduce the term language evolution (Pizka & Jürgens, 2007). They present three

Rule User Interface Elements Documentation

19/54

special DSLs which can be used to switch between different generations of a language: the

Grammar Evolution Language (GEL) describes the grammatical difference between two language

versions, the Word Evolution Language (WEL) focuses on the syntax, and the Language Evolution

Language (LEL) combines GEL and WEL to perform language transformations.

In order to reduce the cost of developing and maintaining a DSL, language modularization can be

used. Hudak tries to reuse compiler components such as lexer and parser as well as semantic

analysis (Hudak, 1998). Irazabal and Pons present a modularization technique based on Xtext

(Irazabal & Pons, 2010). Therefore they import several partial language definitions and merge

them into a new single one.

In recent times, domain-specific languages are also used to simplify the development of distributed

programs and algorithms. For example, Lee et al. present the Delite Compiler Framework which

allows users to describe parallel code execution using an abstract DSL (Lee, Brown, Sujeeth, & al.,

2011). The framework is able to use the abstract description to generate optimized code for

several, heterogeneous platforms such as different operating systems, mobile devices or GPUs via

CUDA or OpenCL. Their work aims for hiding the specifics of each target platform from the user. In

order to develop their languages, Lee et al. use the so-called language virtualization technique

(Chafi & al., 2010). Components of a high level language (in this case Scala) such as lexer, parser

and type checker will be reused. Based on that, components for optimization and code generation

will be implemented. Sujeeth et al. use the Delite Compiler Framework and this technique to

implement the OptiML language which is a DSL for distributed machine learning (Sujeeth & al.,

2011).

Xtext12 is a language workbench written in Java and based on the Eclipse Modeling Framework

(EMF)13 and ANTLR14 as the underlying language recognition tool. Xtext allows domain-specific

languages up to general purpose languages to be defined. In recent times, Xtext has gained

prominence and is used for a wide range of applications in the Java community—e.g. the Xtend15

language that adds useful features to Java, Spray16 which is a DSL for the Graphiti framework17,

etc.

In Xtext you define a DSL by specifying a context-free grammar which is interpreted by ANTLR.

This tool will automatically generate the lexer and the parser for the language. Language

12 http://www.eclipse.org/Xtext/index.html
13 http://www.eclipse.org/modeling/emf/
14 http://antlr.org/
15 http://www.eclipse.org/xtend/
16 http://code.google.com/a/eclipselabs.org/p/spray/
17 http://www.eclipse.org/graphiti/

Rule User Interface Elements Documentation

20/54

constructs will be mapped to an EMF model that Xtext automatically derives from the grammar.

Additionally, the framework can generate an editor that can be embedded in Eclipse RCP

applications. This editor offers features such as syntax highlighting, auto completion, etc.”

We found embedding the editor in an existing Eclipse RCP application to be quite hard to manage.

First of all, Xtext creates OSGi bundles which have a large number of dependencies. It also

depends on some parts of the Eclipse IDE. So, if you want to include an editor generated by Xtext

into an existing application you also will have to include a lot of additional bundles from the Eclipse

IDE. These bundles also contain extensions to the application’s main menu as well as additional

views. It’s rather hard to disable all that additional UI elements that you actually do not want to

have in your application. You can use RCP activities for that, but this just seems to be a quick and

dirty solution. In fact, it would be better to completely avoid these dependencies—which is,

unfortunately, not yet possible with Xtext.

The framework makes heavy use of code generation. This raises the question whether generated

code should be checked in into source control, and if not what additional steps have to be included

in the build process and what additional plugins do the developers have to install in the IDE in

order to locally generate the code.

For the various urbanAPI scenarios, we need different domain-specific languages, probably

modular or hierarchical and configurable to a certain degree. With Xtext this task is rather hard as it

requires the developer to generate new OSGi bundles for each single DSL which may eventually

lead to a quite large number of bundles. We consider this situation hard to manage. A dynamic

language interpreter without code generation would be much easier to handle.

Rule User Interface Elements Documentation

21/54

5.3 Rule languages

This section contains an overview over state-of-the-art rule languages and how they compare to

our approach.

5.3.1 Artifical intelligence

One of the most popular rule languages is Prolog, which is a declarative programming language for

logical expressions. Prolog programs consist of a number of relations expressed in Horn clauses, a

subset of first-order logic terms. There are two types of clauses: rules and facts. A rule consists of

a head and a body. The body consists of a number of predicates that evaluate to true or false. The

rule head:- body means that head is true if body is true. A rule without a body is called a fact.

After specifying rules and facts, the user defines queries which the system tries to answer with

either “Yes/True” (the query was successful) or “No/False” (the query was not successful or it could

not be answered).

Prolog mostly uses pure predicates that have no side effects, except for certain predicates that can

have minor side effects, such as printing a value to the screen. Besides Prolog there are other rule

languages for knowledge representation in the area of artificial intelligence such as F-Logic.

Other rule languages often used in the area of artificial intelligence allow for a wider range of

predicates with side-effects, for example, the rule languages of Jess and CLIPS. Both engines use

a LISP dialect for rule declaration. They both allow users to define production rules that have a

right-hand side where some kind of output can be produced or the fact base can be altered. More

precisely, in Jess and CLIPS rules consist of a left-hand side where a condition can be specified,

and a right-hand side that contains an action. The action will only be executed if the condition

evaluates to true. For example, this enables new facts to be inserted into the working memory if a

certain condition is true. This type of fact inference is supported by the RETE algorithm which

allows rules to be chained: if a fact is added to the working memory because a condition became

true, another condition of another rule might become true which causes this rule to be executed

(fired) as well. Since the RETE algorithm is event-based, it is also known to be very efficient when

it comes to perform pattern matching on a fact base, in particular if the facts are changed

frequently.

The rule languages presented in this section differ from the approach we propose in the following

aspects:

Rule User Interface Elements Documentation

22/54

¶ Prolog’s language is on the one side easy to learn, but one the other side requires the user

to be able to express problems in first-order logic. Moreover, Prolog allows for defining

problems from almost arbitrary application domains. The same applies to F-Logic. The

domain-specific languages we propose are more targeted to a specific use case. They only

contain vocabulary necessary in the specific application domain. They are not as flexible as

Prolog’s language, but easier to learn and easier to use for non-IT personnel.

¶ Jess and CLIPS are production rule systems. This kind of rule-based system definitely fits

better to our approach of using rules for data integration, visualisation, etc. For example, in

Jess it’s possible to change an object’s color18 if some condition is true (if its type is a

building, for example). However, Jess and CLIPS use a LISP-dialect as their rule language.

Although many computer scientists don’t have problems with writing LISP scripts, end-

users with no background in functional programming will surely have. At least it will be a lot

harder for them, in particular since the excessive use of parentheses in LISP often scares

people off, even experienced programmers. The rule languages we propose are a lot easier

to read since they almost look like natural language. At the same time they have a well-

defined grammar and syntax and are readable by machines and humans.

5.3.2 Rule markup languages

Another area where rule languages are used is the Semantic Web. In section 5.1 we already

introduced rule-based systems falling into this category, but here we focus more on the languages

used.

A popular markup language for rules in the semantic web is RuleML. RuleML is actually a family of

rule languages serialised in XML. Its main focus is interoperability. RuleML is modular and

supports subfamilies such as SWRL, RQL, or OWL. Existing rule-based systems such as CLIPS,

Jess, or ILOG JRules support RuleML as rule exchange format.

RuleML differs from our approach in terms of readability and usability. RuleML is an exchange

format for rules meant to be read by machines and not humans. Its standardised format supports

this very well. Our domain-specific languages, on the other hand, are designed to be easy

understandable by humans, in particular domain experts. Of course, since our DSLs have a well-

defined syntax and grammar they’re also parseable by machines, but the main focus is to provide

a good usability.

18 Jess is not an object-oriented rule engine. So, in fact, it’s not possible to change an object’s
color, but to introduce a fact that relates a color to some other fact.

Rule User Interface Elements Documentation

23/54

Another format worth mentioning is RIF. Just like RuleML it’s XML-based. Its main focus is also

rule exchange, hence its name Rule Interchange Format. It compares to our approach just the

same as RuleML.

Compared to RuleML and RIF there are rule languages in the semantic web area that are more

readable. One of these is SWRL (Semantic Web Rule Language). SWRL has a XML-based

syntax, but also a so-called Human-Readable Syntax. SWRL is mainly used to define logical

expressions through Horn clauses. It can be compared to Prolog’s approach although it is more

targeted to the semantic web. Compared to our domain-specific languages it differs in the following

aspects:

¶ It is definitely more readable than the XML-based approaches presented above, but it still

requires user experience in expressing problems in first-order logic. Our DSLs are targeted

to a specific application domain and are therefore a lot easier to read and use for non-IT

personnel.

¶ Although SWRL is targeted to the Semantic Web, it is still generic and can be used to

express a wide range of problems. Our DSLs are targeted to specific problems only.

5.3.3 Object-oriented rule languages

There are some rule languages that focus on object-oriented problems more than the other rules

described above. One of these languages is the Object Constraint Language (OCL) which is part

of UML. OCL can be used to describe constraints on objects through invariants, preconditions,

postconditions, etc. For example, it can be used to express that some kind of condition must hold

before an object’s method can be called, or that a field’s value lies between a specified range.

OCL can actually be used well to define policy constraints like it has been done by Sohr et al. to

define constraints for user authorisation policies (Sohr, Ahn, & Migge, 2005). However, OCL differs

from our approach in the following aspects:

¶ It is rather generic since it focuses on expressing constraints on arbitrary objects, so OCL

requires the user to have an understanding of object-oriented design. Our languages are

tailored to the urban management domain and are therefore a lot easier to use for experts

from this domain.

¶ OCL’s syntax is very readable for software developers. However, we aim for languages that

look like natural prose, although our languages also have a well-defined syntax and

grammar for them to be readable by machines.

Rule User Interface Elements Documentation

24/54

¶ In some use cases we need production rules as we want the user to be able to change the

visualisation of geodata, for example. With OCL this would not be possible.

Another well-known object-oriented rule engine is Drools. We already introduced this framework in

section 5.1. Drools has its own rule language that is also very generic. It does not target a specific

application domain, but is on the other hand very flexible. Drools comes with its own support for

domain-specific languages. It uses regular expressions which the developer has to map to

expressions in Drools’ rule language. Regular expressions are not as flexible as an external DSL

with a complete grammar and syntax. Instead they can only be used for a limited variety of use

cases.

However, as described in section 5.1 we use Drools as the underlying rule engine whenever

possible.

The third object-oriented rule engine worth to mention is the commercial product ILOG JRules.

JRules was developed by a company called ILOG, which was bought by IBM in 2009. The

framework mostly focuses on business rules. It contains two languages: the ILOG Rule Language

(IRL) and the Business Action Language (BAL). Both languages are rather easy to read and use,

although IRL is meant to be used by developers instead of domain experts. BAL on the other hand

consists of a number of predefined constructs that make rules define in this language almost look

like natural prose. For example, the following rule does exactly what it says:

If the name of customer contains ñPeterò

then print ñHello ñ + the name of customer

This rule is perfectly readable for domain experts, even if they have no background in

programming, semantic web, or first-order logic—as they would have for the languages described

above. This is exactly the same kind of language that we are aiming for. ILOG JRules even

contains an editor that supports syntax highlighting and auto-completion. This tremendously

speeds up the rule definition process. Besides, it helps inexperienced users define rules on their

own. In urbanAPI we also aim for developing a similar editor for our rule languages.

Unfortunately, ILOG JRules is a commercial, closed-source product. So, it’s not possible to

integrate it into urbanAPI. Apart from that, the Business Action Language BAL only contains a

number of predefined constructs that are very generic. It is not meant to be used in the urban

management domain. Some of these predefine constructs are:

all of the following conditions are true

any of the following conditions is true

Rule User Interface Elements Documentation

25/54

the name of this rule

it is not true that <condition>

the number of <objects>

Of course, the underlying object model can be arbitrary, so it would indeed be possible to use an

urban management domain model as well. However, this only applies to the objects and properties

that can be used in the language. The general constructs that make up a natural-sounding

sentence in a rule cannot be changed.

5.4 Graphical rule editors

There are a number of graphical user interfaces the support users in the process of rule definition.

One of these editors comes with the rule engine Drools (already described above). Figure 1 shows

a screenshot of this editor.

 Figure 1 The graphical rule editor of Drools (source: http://www.jboss.org/drools/drools-expert.html)

Rule User Interface Elements Documentation

26/54

The editor is divided into two parts, a when section and a then section. In the when section, the

user can add several conditions. The then section contains actions that should be performed when

the conditions evaluate to true.

The editor builds up on Drools’ own rule language. The selections made by the user are translated

directly to a textual rule script. Compared to the rule editor we present in section 6 it is very

generic. Just like Drools’ rule language it can be used for almost arbitrary problems that can be

expressed with production rules. Our rule editor on the other hand is tailored to be used in the area

of geospatial applications, in particular urban management and is therefore easier to use for

experts of this domain.

Another editor similar to the one of Drools is the Oracle Business Rules editor that is part of

Business Process Composer. The rule language used in Oracle Business Rules is quite similar to

the one used in Drools. Rules consist of a WHEN and THEN clause, defining the condition and the

action respectively. The grammar is easy to read if you’re used to declarative rules, but rather hard

for domain experts.

The editor has a similar interface to the one of Drools. It guides the user through the rule definition

process by providing forms whose contents directly translate to the textual rule language. (see

Figure 2).

Figure 2 The guided rule editor of Oracle Business Process Composer

Rule User Interface Elements Documentation

27/54

Another graphical editor for rules is Visual Rules Modeler by Bosch (see Figure 3). The tool

supports modelling rules through flow diagrams and decision tables. The diagrams are easy to

read and clearly show what decisions lead to which result.

The visual rule language consists of components you also find in UML flow charts. There are start

and end symbols, generic processing steps (actions), subroutines, input/output symbols, and

conditionals. These components are connected by lines to indicate the flow from the start symbol

to the end symbol. The diagrams are read from the left to the right.

Visual Rules Modeler is a commercial product that cannot be integrated into urbanAPI.

Additionally, it is not meant to be used in the geospatial domain, hence it lacks features such as

spatial indexes, etc.

The fourth graphical rule editor presented here is the one that comes with OntoStudio from

Semafora Systems GmbH. The rule editor has been completely reimplemented within the

ONTORULE project. ONTORULE was co-funded by the European Commision from January 2009

to December 2011 under the FP7 programme. The OntoStudio developers figured that RIF rules

Figure 3 The Visual Rule Editor by Bosch (source: http://www.bosch-

si.com/technology/business-rules-management-brm/brm-komponents/visual-rules-

modeler.html)

Rule User Interface Elements Documentation

28/54

(see section 5.3.2) are very hard to read for domain expert, so they implemented a graphical editor

that supports the user in rule editing:

ñThe standard RIF is a format for exchanging rules between different tools. Itôs intention

was not to be used for modelling purpose and the representation syntaxes are not easily

understandable by non-experts. Looking at the internal representation format ObjectLogic

of the ontology and rule modelling environment OntoStudio also reveals that the syntax is

not easy to use by non-experts. To provide an editor that can be used by non-experts

ontoprise developed a graphical rule editor which hides the complexity of the syntax and

provides easy drag&drop functionality as well as auto-completion.ò

ð Eva Maria Kiss, Ontoprise GmbH, August 2011

http://ontorule-project.eu/showcase/OntoStudio_Graphical_Rule_Editor

(last visited: 2013-09-07)

The OntoStudio rule editor is based in concepts from UML. The developers claim that UML is well-

known to many users and so the rule editor should be a lot easier to use than writing rules directly

in RIF. Figure 4 shows a screenshot.

Figure 4 The graphical rule editor of OntoStudio (source:

http://www.semafora-systems.com/en/products/ontostudio/, last visited:

2013-09-07)

Again, the graphical rule editor is very flexible and can be used for a wide range of applications,

but it is not meant to be used in the geospatial area and in particular not for urban management

Rule User Interface Elements Documentation

29/54

applications. Of course, it might be possible to use it in these areas, but the editor would be harder

to use than one that is directly tailored to these application domains.

5.4.1 Summary

One of the major differences between the 3rd party graphical rule editors described above and our

editor presented in the next section lies in the vocabulary used. Our editor consists of a very limited

set of conditions and actions (called recipes) that are meant to be used in the geospatial domain.

Recipes are a lot more powerful than most of the expressions in the 3rd party tools. For example,

with the 3rd party tools users operate on objects and their attributes on a very low level using

conditionals, variable assignments, etc., whereas our editor contains powerful actions such as the

3D “extrusion” operation which implements a whole geometrical algorithm in only one expression.

Of course, the limited vocabulary also limits the use of the editor to the use cases it has been

designed for. It is not overly flexible and cannot be used in arbitrary scenarios. One the one hand

the 3rd party tools are superior in respect to their feature-richness and flexibility, but on the other

hand the limited vocabulary of our editor consisting of terms from the geospatial domain makes the

editor easier to learn for domain experts. In order to improve the reusability of our editor we

implement the following.

¶ Recipes can have parameters which allows them to be adapted to various situations.

¶ Our editor is very modular, so adding new recipes or changing the behaviour of an existing

one is very easy and can be done in a short amount of time.

Another difference between our editor and the Bosch Visual Rules Modeler, for example, is that we

rely on the capabilities of the underlying rule-based system Drools to forward chain rules to create

a complex workflow. In Bosch Visual Rules Modeler you mostly work on very large flow diagrams

that can become confusing very quickly, especially for users who are not experienced in rule

modelling. In our editor you work with small rules, where each of them models exactly one aspect.

Together, through forward chaining, these rules can be combined to create a complex workflow.

For the domain user it is easier to work on single aspects at a time without having to deal with the

whole workflow..

5.5 Graphical editors in the geospatial area

Please note that the editors presented above are very flexible and can be used for a wide range of

applications, but they are not directly tailored to the geospatial domain. The use of rules and

Rule User Interface Elements Documentation

30/54

techniques from the semantic web in geospatial applications is generally considered useful (van

Oosterom, 2009) and so there are some extensions to existing rule systems such as stSPARQL or

GeoSPARQL. However there are no graphical editors for geospatial rules yet. You mostly find

graphical rule editors in the area of business modelling or semantic web but not geospatial

information management or even urban management.

Nevertheless, there are tools that can be used to perform geospatial operations, in particular there

is ESRI’s ArcGIS ModelBuilder which is part of the ArcGIS programming framework Spatial

Analyst. The ModelBuilder is based on a graphical editor that allows users to define complex

geospatial workflows. With this editor users can select functions attached to data that matches

given criteria to perform operations such as classification or colour-definition. Figure 5 shows a

screenshot of this tool.

The ArcGIS ModelBuilder is targeted to geospatial applications and therefore only contains

operations needed in this domain. This includes spatial indexes (and operations such as “near” or

“inside”) as well as geometric operations (such as generating buffer polygons). The tool supports

Figure 5 The graphical editor of ESRI ArcGIS ModelBuilder (source :

http://www.esri.com/software/arcgis/extensions/spatialanalyst/key-

features/graphical, last visited: 2013-09-07)

http://www.esri.com/software/arcgis/extensions/spatialanalyst/key-features/graphical
http://www.esri.com/software/arcgis/extensions/spatialanalyst/key-features/graphical

Rule User Interface Elements Documentation

31/54

2D data and 2,5D raster data. However, one of the scenarios of the urbanAPI project is about 3D

VR applications, in particular 3D city models. Such kind of data cannot be processed with ArcGIS.

Apart from that, ArcGIS is a commercial product and cannot be integrated into the urbanAPI

toolset.

6 The CityServer3D’s Graphical Rule Editor

The CityServer3D is a client-server system for storage, visualization, and processing of spatial

data. Geoinformation from different sources is stored in an object-relational database and placed in

the web to be used by different clients. In addition to 2D and 3D geometries at different levels of

detail (LOD) the CityServer3D can also store and process technical and metadata.

It offers access to geodata via standardized interfaces. When connected to already existing data

infrastructures, the CityServer3D helps you to efficiently manage your 3D city models. The

integrated continuation processes grant a sustainable use of the information. Integrating

multimedia content can positively affect the presentation of geodata. The CityServer3D can be

used for a wide range of applications among them urban planning, visual simulation and data

analysis.

6.1 CityServer3D – AdminTool

The AdminTool is a desktop application with a large feature set. Import and export of geodata into

a local working area or into the CityServer3D Server, quality assurance, rule definition, data editing

and of course the visualization are only a few of its features.

The user interface can be customized with different views, depending on the customers’

requirements. The most used and most important views (arranged from left to right in the picture

above) are the explorer view, the 3D view and the 2D view. The explorer displays a hierarchic

overview of scene currently loaded. The 3D view visualizes the geodata and the 2D view is mainly

used for navigation and orientation. In addition there are pre-built perspectives representing

different views in different alignments.

Rule User Interface Elements Documentation

32/54

6.2 Graphical rule editor

During the UrbanAPI project Fraunhofer IGD has extended the CityServer3D AdminTool by a

graphical rule editor. This editor allows automated processes to be created. In the product view the

user can define not only data sources to be processed but also rules containing several workflow

steps.

Currently there are various workflow steps, which you can combine in the rule editor with just one

click. For example, it is possible to colorize all objects of a certain type in the city model such as

buildings or trees, or objects with a certain level of detail. This process can be saved and executed

whenever it is required. It allows the integration of different data sources into a common data basis.

The projects view (on the left side of Figure 6) allows the user to create several projects with its

own rules and data sources. Thereby fast import and rule execution is granted.

The report view (on the bottom of Figure 6) is used for feedback while executing a rule. If an object

could not be changed or filtered by the rule for any reason, a report will appear there containing a

feedback message and a link to the said object. For example if a rule filters objects by a value of a

metadata, the report view will provide a list of all objects without the requested metadata.

Figure 6 The CityServer3D contains a graphical rule editor

Rule User Interface Elements Documentation

33/54

The graphical editor contains two major components: The recipes and the cookbooks. Each recipe

is represented with one block and the cookbooks separate the large number of recipes into groups

for better overview. The available cookbooks are on the top of the tool bar.

 The graphical editor itself is divided in three parts. The tool bar on the left side contains all recipes

available in the selected cookbook. The brown recipes are conditions. They filter objects by

different criteria—e.g. appearance, location, size or metadata. The other recipes are actions and

differ by their function. Blue recipes are for editing, green ones are for creating and red ones are

for deleting data. Those action recipes are placed on the lower side of the editor.

Rule User Interface Elements Documentation

34/54

Each recipe contains several parameters such as the colour recipe which contains the colour and

values for opacity and variation. When adding or editing a recipe, a wizard will be displayed where

the user can enter this information.

The granularity of the recipes is based on criteria described in section 7.

6.3 Recipes

In this chapter we explain the recipes that have been developed especially for the UrbanAPI

project. The description will include recipe parameters and examples for practical use. In addition

there will be a complete workflow based on example data from Cologne.

Tile Terrain (Action)

This recipe divides the digital terrain model into several parts. The user can define the amount of

parts with a slider in the wizard page of this recipe.

Rule User Interface Elements Documentation

35/54

Map to Terrain (Action)

This recipe can map 2D items from shape files as textures to digital terrain models in the scene.

The parameters are the resolution of the texture and the colour. The colour can be a default colour

or it predefined by metadata of the object.

6.4 Example: Cologne

This demo is an example of data continuation. We have two different data sets: The digital terrain

model and the buildings footprints.

The footprints contain different metadata which can be used to change the data. First of all we will

explain the single steps, followed by the required recipes and finally the three rules needed for this

scenario.

Rule User Interface Elements Documentation

36/54

In the beginning we copy the buildings’ footprints, so the original data won’t be changed.

After that we take the footprints and lift them to the height of the digital terrain model and extrude

them. We use the Metadata NumberOfFloorsAboveGround for extrusion.

Some buildings don’t have that metadata, e.g. the Cologne Cathedral. Those buildings are

extruded per default by one floor. We will get a report of those buildings and can delete them from

the scene. In this case we delete the Cologne Cathedral. Now we can finish with the third rule.

We select the buildings’ original footprints and add a duplicate filter, so that already changed

buildings won’t be extruded again. Then we can extrude them by 45 meters, no matter what

metadata they got. As a result the Cologne Cathedral will appear within the city model with a height

of 45 meters.

The different recipes used for this scenario:

Conditions:

Layer

This recipe is for layer selection. You can specify multiple layers here and only objects

within those layers will be changed.

Duplicate Filter

You can specify all layers which should be controlled and this filter ignores all objects which

are already part of these layers.

Rule User Interface Elements Documentation

37/54

Actions:

Copy

This recipe makes a copy of all objects and the copies won’t be changed by any following

action recipes.

DGM Match

With this recipe you can lift or lower buildings to the height of a digital terrain model. It

requires no parameters, because it takes the terrain model below or above the building.

Extrude

This recipe extrudes a 2D footprint with two parameters: The amount of floors via metadata

and the floor height. In this scenario we use three meter floor height and the metadata

NumberOfFloorsAboveGround.

Move into layer

This recipe moves all objects to a specified layer.

Rules:

The different rules in the order of execution:

Rule #1:

Layer, Copy, Move into Layer

Rule #2:

Layer, DGM Match, Extrude

Now we delete the Cologne Cathedral manually.

Rule #3:

Layer, Duplicate Filter, DGM Match, Extrude

Rule User Interface Elements Documentation

38/54

7 Some words on granularity

The granularity of the language constructs must be chosen carefully. They shouldn’t be too trivial

or too powerful, since the usability would not be viable. The language constructs, using the

principle separation of concerns, will always capture particular attributes from one of the following

categories:

¶ Source: What is the source of this data? (E.g. Database, local file, scene)

¶ Properties: Which properties does the object have? (E.g. Colour, texture, metadata, level of

Detail)

¶ Geographical: What is the size or the location of the object?

In addition to the categories the actions are divided into three types; add, update and delete. In this

way actions are very specific and the three types are an increased security method to avoid too

powerful language constructs.

Due to this granularity, the individual language constructs in their function and their information are

distinct, however, must not be used in combination, so each component has its own use. In this

manner, complex rules are produced without using an excessive amount of language constructs.

This will lead to user-friendly, self-explanatory rules.

8 Policy modelling rules

Section 1 proofs that production rules can be of use for interactive policy modelling. For example,

they can be used to automatically update the visualization or the user interface when a certain

condition becomes true.

The urban planning scenario in Bologna requires a user interface that allows users to insert, move

or delete waste bins in the city. During interactive policy modelling, rules can be very useful. The

policy that is modelled here is how many waste bins should be available in a certain area. The user

wants to find the right balance between too few bins—which would eventually lead to dirty streets,

because people would deposit waste on the ground—and too much bins—which would probably

have a negative influence on the cityscape. A rule could be used here to control a visual indicator

that goes from green (good) to red (bad). The more far the number of waste bins within an area is

away from the ideal number, the more the indicator will turn to red. Event-based rule execution

can be used here to update the indicator whenever a waste bin is added or removed.

Rule User Interface Elements Documentation

39/54

In the following section we describe how domain-specific languages for policy modelling

applications can be designed. We start with a general description of an ontology modelling process

for domain-specific languages. Then we present sample scenarios and sample languages. Finally,

we derive entities and operations used in the domain-specific languages and show examples.

8.1 Ontology modelling

In the urbanAPI project we aim for creating domain-specific languages that use terms from the

user’s domain. In the area of semantic web ontology building is used to identify concepts and

relations from a given application domain. Ontologies can be useful for the definition of domain-

specific languages where they act as the basis from which the taxonomy, vocabulary, and parts of

the grammar are derived.

Ontology building is typically divided into several parts and iterations (Nicola, Missikoff, & Navigli,

2009). In order to create a domain-specific language, the following workflow can be used:

1. Analyse the application domain

2. Create scenarios/storyboards

3. Look for subjects and objects. Create a concept in the ontology for each subject/object.

4. Look for predicates. Use them in the ontology as relations to connect the subjects and

objects.

5. Build sample scripts that use the created ontology

6. Review and reiterate if needed

In the urbanAPI user workshop that was held from 2nd to 4th of July 2013 in Darmstadt we used this

workflow to generate ontologies for the 3D VR applications. The first two steps, the domain

analysis as well as the creation of scenarios or storyboards, had already been done before. The

results of this can be found in deliverable D2.1.

In the workshop we therefore started with step 3. Together with users from the cities we analysed

the scenario descriptions of Vitoria-Gasteiz and Bologna. We were looking for subjects and objects

that we needed to add to the ontologies as concepts. We then set the concepts into relation by

connecting them with predicates. The domain analyses can be found in sections 8.1.1 and 8.1.2.

The resulting ontologies are presented in sections 8.1.3 and 8.1.4.

Rule User Interface Elements Documentation

40/54

8.1.1 Ontology analysis for the 3D VR scenario in Vitoria-Gasteiz

The following text has been taken out of deliverable D2.1. It is the scenario description for the 3D

VR application for Vitoria-Gasteiz. Terms important for the domain and hence for the ontology are

marked in bold. Note that the terms have been selected during the user workshop. The text

certainly contains more terms, but these are the ones that the users consider most important and

that should go into the domain-specific languages.

ñ[é] the Department in charge of Water Management studies the permeable pavement in the new

section, the application helps them to calculate the water volume of run-off in different raining

scenarios and this way they decide what capacity new sustainable drainage systems must have.

They are also able to evaluate the amount of stormwater that will be released from going to the

traditional sewage system to the natural depuration system.

The Parks and Gardens Department visualizes the state of the project to short, medium and long

term in different scenarios corresponding to different epochs of the year and with different

vegetable species. This way, they can decide which are the most appropriate species for each of

the streets, according, for example, to shelter/shadow, biocapacity, biodiversity and management

criteria and indicators.

The Architecture Department identifies the main buildings to be rehabilitated. They set a list of

green factors that can be introduced in order to improve energy consumption and production, as

well as increase biodiversity and biocapacity rates. The application helps its visualization in the

urban scenario and shows the quantification of the new rates.

The Public Space Department plans a new distribution for the different modes of mobility, including

the reduction of the on street parking in order to increase public space for pedestrians. The

application helps to calculate the changes of uses in the new section. Following to this, they also

realize a new type urban lighting could be more efficient, and the application is also capable of

visualizing the energy savings that this change will mean in the set of the streets.ò

8.1.2 Ontology analysis for the 3D VR scenario in Bologna

The following text has been taken out of deliverable D2.1. It is the scenario description for the 3D

VR application for Bologna. Terms important for the domain and hence for the ontology are marked

in bold. Note that the terms have been selected during the user workshop. The text certainly

contains more terms, but these are the ones that the users consider most important and that

should go into the domain-specific languages.

Rule User Interface Elements Documentation

41/54

 ñMr. Rossi loads 3D VR application [é]. On the first screen he gets various options and text

explaining what he can do. Options are related to the main objects which have been identified as

the most important ones for the rehabilitation of the district. Mainly these options are:

¶ Waste collection,

¶ Green areas such as park, plant, tree and garden, etc

¶ Car parking spaces,

¶ Street/Public space benches

¶ Bike sharing and racks

¶ Junction boxes,

¶ Traffic markings and road sings,

¶ Pedestrian ways,

¶ Open spaces for bars/restaurants, and

¶ Public street lighting.

[é]

Following these steps, he clicks on the city maps of the district. He zooms to a street. He selects a

garbage bin located on the 3D street maps. The left side window/panel contains all the editing

options he can apply to this object. He decides to eliminate it from the street.

Mr. Rossi decides to intervene on other options which are listed in the main left side window panel.

For example, he selects ñGreenò option. The subset of this option has two other options, such as

ñTreesò and ñPlantsò. [é] Mr. Rossi drags one plant into the 3D screen and places on the location

from where he earlier removed the garbage bin. Mr. Rossi also wants to insert a tree into the

street. He again goes to the left panel and selects ñTreesò option and as a result on the right side

of the screen a new palette window opens showing different tree objects. He tries to drag one of

the tree objects on the roadway but it doesnôt work. A help box indicates that trees cannot be

planted on roadways and suggests other nearby places to plant the tree. He again drags the tree

on a little garden beside the street and everything works fine. [é]ò

8.1.3 Ontology model for the 3D VR scenario in Vitoria-Gasteiz

After identifying the most important terms we put them as concepts into an ontology model and

created relations between them. Some terms were merged to more general ones, some terms had

to be added since they did not appear in the scenario descriptions yet. Note that the ontologies

Rule User Interface Elements Documentation

42/54

have been worked out together with the users during the user workshop. They contain concepts

and relations the users consider most important for the domain-specific languages.

Figure 7 Ontology for the 3D VR scenario in Vitoria-Gasteiz

8.1.4 Ontology model for the 3D VR scenario in Bologna

Figure 8 Ontology for the 3D VR scenario in Bologna

Rule User Interface Elements Documentation

43/54

8.2 Sample scripts and rules for the 3D VR scenario in Vitoria-Gasteiz

After we have created the ontologies together with the users from the cities, we have created

example scripts or rules written in a domain-specific language—or precisely, multiple languages

(see comment in section Error! Reference source not found. below). We tried to incorporate the

ntologies as much as possible into the syntax and grammar of these languages.

In Vitoria-Gasteiz the following rules could be used to calculate the energy consumption of all lights

on the Avenue de Gasteiz:

The light of type A consumes 3000 kW/h

Street ñAvenue de Gasteizò has 50 lights of type A

Other, similar rules could be used to calculate how much water would drain away depending on the

material used for the various lines on the Avenue de Gasteiz:

Mate rial A has a permeability of 10
- 8

 m/s

Material B has a permeability of 10
ī3

 m/s

All pedestrian lines have material A

All tram lines have material B

8.3 Sample scripts and rules for the 3D VR scenario in Bologna

In Bologna the following rules can be used to alter the visualization depending on given

parameters. For example, the following rule can be used to mark bicycle tracks that are long

enough and not interrupted by other tracks. Such tracks should be displayed in green to indicate

they are considered ‘good’ or ‘preferable’ tracks.

If a bicycle track is longer than 1 km

then display it in green

A similar rule could be used to display streets in green that have enough usable space.

A garbage bin takes 3 units of usable space

If the usable space of street A is more than 200 units

then display it in green

Rule User Interface Elements Documentation

44/54

If the usable space of street A is less than 200 units

then display it in red

It is also possible to define interactive rules, i.e. rules that define how the system behaves

depending on the user’s interaction:

When a garbage bin is removed o n street B

then replace it by green furniture

When a street is free of garbage bins and parking places

then replace it with a bicycle track

8.4 Identified entities and operations

The domain-specific languages presented in the previous sections consist of the concepts

identified in the domain analysis. In particular, the following entities are used:

Vitoria-Gasteiz:

¶ Light

¶ Street

¶ Material

¶ Permeability

¶ Pedestrian line

¶ Tram line

Bologna:

¶ Bicycle track

¶ Garbage bin

¶ Usable space

¶ Street

¶ Green furniture

¶ Parking place

Rule User Interface Elements Documentation

45/54

Note that usable space can be used as a property of street. The ontology defines a has relation

from street to usable space.

The following list contains parameters for the entities. Some of them are derived from concepts

that do not directly appear as entities in the DSLs.

¶ Energy (expressed in kW/h)

¶ Permeability (expressed in m/s)

¶ Usable space (expressed in units)

¶ Lights

o Number of lights

o Type

¶ Material

o Type

¶ Tracks and lines

o Length

The following list contains operators and operations that can be applied to entities. Parameters

are put in angle brackets.

¶ Light consumes <energy>

¶ Street <name> has <n> lights of type <t>

¶ A <entity> takes <n> units of <entity>

¶ Display <entity> in <color>

¶ Replace <entity> by/with <entity>

The DSLs allows users to define rules using the following conditional expressions:

¶ If <entity> is longer/shorter than <n> then …

¶ If <entity> is more than/is less than <n> then …

¶ If <entity> of <entity> is more/less than <n> then …

(in the case of ñusable space of streetò)

Rule User Interface Elements Documentation

46/54

The DSLs allow users to define actions that should be performed as a response to events:

¶ When <entity> is removed then …

¶ When <entity> is added then …

In order to make the DSLs more readable and usable a number of filler words have been added.

These words exist merely for readability. They are skipped during parsing and do not change the

semantics of the rules:

¶ a

¶ the

In conditional expressions the pseudo entity it can be used as a placeholder for the expression’s

subject as follows:

¶ If <entity> is longer/shorter than <n> then display it in <color>

¶ If <entity> of <entity> is more/less than <n> then display it in <color>

¶ etc.

8.5 Conclusion

In the previous sections domain-specific languages for two scenarios have been defined (including

their ontology, syntax and grammar). The languages have been implemented so the scripts can

be tested with real data in the UrbanAPI web portal.

As stated above, domain-specific languages should be very easy to understand for the domain

expert. Therefore DSLs consist of a very limited vocabulary where single expressions may be quite

powerful. Unlike general purpose languages, DSLs are not very flexible. This means that such a

language may only be used in a very specific application domain. This is of course the main goal of

DSLs, but it also shows one drawback: the easier a language is to learn or understand (i.e. the

fewer tokens it contains in its vocabulary) the less flexible it is. Vice versa: the more general or

flexible a language is the more complicated or harder it is to learn. What is actually needed is a

balance between these two goals: flexibility and usability. This can be achieved by reusing

language constructs.

The ontologies presented above show that there are common concepts shared by both scenarios.

By identifying even more common concepts (also by analysing the other project scenarios from

Rule User Interface Elements Documentation

47/54

Vienna and Ruse) we have created a basic domain-specific language that consists of common

terms. It is now able to derive languages specific to each use case from the basic language. This

makes the language definition process a lot easier and faster. Identifying this basic language is

subject to research in the upcoming project months.

8.6 Ontologies and DSLs for other scenarios

The urbanAPI project defines four scenarios (Bologna, Vitoria-Gasteiz, Vienna, Ruse). In this

deliverable ontologies and DSLs for only two of them have been presented (Bologna and Vitoria-

Gasteiz). The reason for this is that the requirements analysis carried out in Work Package 2

revealed that the scenarios of the two partner cities Vienna and Ruse do not require the kind of

rules presented in this document.

¶ The Ruse scenario mostly deals with the simulation of urban development as well as with

citizen engagement facilitated by online questionnaires. The rules presented here can be

used to interactively alter the visualisation of a city model presented to the citizens based

on dynamic constraints defined by urban planners. However, in Ruse the 3D city model is

only used a basic way being are rather static and less interactive.

¶ The same is the case for Vienna. In the Vienna scenario two aspects are of major

importance: the analysis of mobile device data (visualised in 2D) as well as the

presentation of architectural designs in 3D. Neither of both applications requires a rule-

based system or a domain-specific language.

Indeed, as mentioned before, the user requirements workshop in July 2013 in Darmstadt where the

ontologies and DSLs described above were created, was joined by urban planners from Vitoria-

Gasteiz, Bologna and Ruse (i.e. project partner ASDE representing Ruse). However, as a matter of

fact, we only worked on two scenarios. The representative from ASDE took part in the discussion

and provided useful feedback, but we did not work on their scenario since the rule DSL is not

relevant for it.

Rule User Interface Elements Documentation

48/54

9 DSL/Ontology Rule Prototype

This section is part of the improved version of this document (deliverable D3.3) released in PM30.

The first version of this deliverable was released in PM15 with updates (according to the project

reviewer’s comments) in PM25. In the meantime we have developed an additional web-based rule

editor demonstrating the use of domain-specific languages as described in section 8. There are

slight deviations from what has been described before. Instead of updating the previous sections

we decided to indicate the deviations here wherever necessary.

The new rule editor allows for specification of geospatial rules via a domain-specific language. It

integrates a textual editor to create policy modelling rules with the 3D city model and its

visualization component. The modelling rules are scripted by the user in a domain specific

language that is based on domain ontologies as depicted in the previous chapters. The application

is embedded in the UrbanAPI web portal. Figure 9 sketches the two main components, the 3D

viewer on the right hand side and the text editor on the left.

The 3D view is updated whenever the user clicks the ‘validate’ button. At this point the texture rules

are evaluated which means that terms in the DSL are linked to objects in the city model (as

described in the following sections below). After that the rules are executed (i.e. the visual

attributes of the city model are altered) and the display is updated.

Figure 9 User interface with Textual Rule Editor and 3D Viewer component

Rule User Interface Elements Documentation

49/54

The functionality is demonstrated following three representative rules from the previous chapters

that have been slightly adjusted to foster pattern matching in the rule scripts:

(1) If bicycle track Aôs length is higher than 1 km

Then display A green

(2) When garbage bin A is removed

Then replace A with a green furniture

(3) A garbage bin ôs usable space is 3 units

If street Bôs usable space is more than 200 units

Then display B green

Besides the condition (if) and the conclusion (then) statements’ keywords, these rules share a

set of keyword types that are categorised in the following paragraphs:

9.1 Concepts and relations

The semantic meaning of the rules can mainly be conducted from the concept expressions. The

concepts of the above listed rules are collected in the following table. Note that for enhanced

readability the concept’s display name annotations are used within the editor. The concepts’ URI

uses the more common camel case style.

Bicycle Track Length Street

Green Furniture UsableS pace GarbageB in

Regarding sections 8.1.3 and 8.1.4 these concepts are modelled in micro domain ontologies,

where the expression ‘micro’ indicates the ontology’s limited scope. Each domain ontology has

been created for a specific use case and is fit for a particular purpose. As an advantage, this

limited scope avoids misinterpretations of the used expressions (Janowicz, Scheider, Pehle, &

Hart, 2012). The ontology is modelled in OWL using Protégé. In difference to Figure 7 and

Figure 8, the object properties’ URIs are named with a more unique name to get a clearer

semantic understanding when directly acting with the domain ontology, and to specify an

rdfs:range for each object property.

This means for example, the triple

Street Ą has Ą UsableSpace

is modelled in the respective ontology to

Rule User Interface Elements Documentation

50/54

Street Ą hasUsableSpace Ą UsableSpace and

hasUsableSpace Ą rdfs:range Ą UsableSpace

However, a prosaic form of the object property in the DSL editor would entail less readability:

Street has usable space usable space

Thus, the number of object properties linking two concepts in the ontology has to be reduced to a

maximum of one so that the properties can be uniquely assigned from the DSL editor to the

ontology. Following these restrictions, we can use a possessive relation structure with the key

expressions has or the genitive form >ôs< (street A ôs usable space) in the DSL editor.

9.2 Data properties and measurement units

Modelling the domain concepts through an OWL ontology fosters inclusion of third party ontologies

as in a complementally manner. As an example, the semantic richness of NASA’s SWEET

ontology (Raskin & Pan, 2005) has been included in the architecture of the web-based rule editor.

This has been done by creating direct links from the respective domain ontology to the

measurement units included in the SWEET ontology. The measurement units are modelled with

their respective symbols (e.g. km for kilometre) which allows for using these symbols in the textual

rule editor. Unit expressions are only valid in a value-unit combination.

Values are used in a common manner, whereas numerical, textual and Boolean values are

allowed. Numerical values might occur with an additional unit expression. Values are connected

with their respective expressions with a standalone is keyword.

9.3 Comparison expressions

Comparison expressions are pre-defined and are replaced accordingly in the rule interpreting

engine with the respective comparison commands as shown in the following table:

Textual comparison expression Symbolic comparison expression

higher than ≥

more than ≥

less than ≤

lower than ≤

Rule User Interface Elements Documentation

51/54

missing textual comparison, such as

Length is 1 m

=

9.4 Variables

Variables indicate linkages within the textual rule. Whenever a capital letter follows a concept

expression it is interpreted as a variable. This variable can be used throughout the rule as a

placeholder.

9.5 Connection to the 3D city model

There are two ways to connect the web-based rule editor with the 3D model, the conceptual

linkage and the action based connection. The conceptual linkage is stored in mapping tables that

relate concepts of a domain ontology with the respective attribute names of a geometry, encoded

in the X3D representation19 of the 3D city model. These contain values types, such as an identifier,

length or type as shown in the following example:

The linkage in terms of actions is based on the following commands that can be used when

interacting with the 3D viewer:

¶ remove : this command removes a removable spatial entity (e.g. a garbage bin) from the

3D city scene when it fits the conditions specified in the rule

¶ is removed : this expression is resolved similar to a value in the conditional statement but

in an event driven interactive manner

19 The 3D city model is stored in the standardized X3D file format which can be interpreted with the
open source software X3DOM to allow plugin-less 3D visualisation in the web (see deliverable
D4.2 for details).

<MetadataSet containerField='value' name='Generic'>

 <MetadataString container Field='value' name=' ID ' value='3 '/>

 <MetadataDouble containerField ='value' name=' Length ' value='0'/>

 <MetadataString containerField='value' name=' Type ' value='" Street "'/>

</MetadataSet>

Rule User Interface Elements Documentation

52/54

¶ display : this expression highlights spatial features in the 3D viewer that meet the

conditions specified in the if-statement. The display expression is bounded with a set of

colours (e.g. green, red, …).

¶ replace : similar to the first expression, this expression replaces a removable spatial entity

from the 3D city scene with another spatial entity that fits the condition of the specified rule

9.6 Relation to other ontologies

In the spatial domain, there are a set of semantic vocabularies to which the created domain

ontologies can be related through direct links. One example for these ontologies is the

GeoSPARQL vocabulary20, which defines spatial entities and their relations to geometries. Since

the concepts within the UrbanAPI use cases are visualized within a spatial domain, these can be

related as subclasses to the SpatialObject concept of the GeoSPARQL vocabulary. Further

examples include the Linked Geo Data Ontology21 which models concepts required for the

OpenStreetMap project. These include similar concepts as required for the UrbanAPI use cases,

e.g. Street, StreetLamps, Tree, Garbage etc. A third example is the CityGML model, provided by

the Open Geospatial Consortium, which aims to model objects in a 3D city environment, such as

TrafficArea and its categories (e.g. bicycle, car, etc.).

Whilst GeoSPARQL is a more abstract vocabulary and relations to its concepts are realized

through rdfs:subC lass Of relations, linkage to Linked Geo Data Ontology or CityGML has to be

further investigated. Herein a linkage pattern has to be defined that does not assume semantic

similarity (e.g. owl:sameAs) which has been discussed as semantically error-prone (Halpin,

Hayes, McCusker, McGuinness, & Thompson, 2010). Alternatives, such as the SKOS ontology22,

required to categorize the degree of similarity between two concepts, which practice is also vague.

This alignment pattern would allow for direct translation of the created rules into the interlinked

ontologies to integrate the 3D scene or use cases in other application areas.

10 Conclusion

In this report we present the motivation for using rule-based systems and domain-specific

languages in the urbanAPI project. Rule-based systems can be used quite well to automate

complex workflows in the geospatial domain, but they are rather complex and hard to understand

20 http://schemas.opengis.net/geosparql/1.0/geosparql_vocab_all.rdf
21 http://linkedgeodata.org/ontology
22 http://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html

Rule User Interface Elements Documentation

53/54

for non-IT personnel. Domain-specific languages are tailored to a very specific application domain

and help users express workflows in their own language.

In this report we also present an overview over the state of the art and made a comprehensive

comparison of different rule-based systems. We finally decided to apply Drools since if fulfils all our

requirements and can be integrated very well into the existing infrastructure.

We present further the current status of development in the CityServer3D, where we already

implemented a graphical rule editor.

Finally, we present a concept for textual domain-specific languages and a web-based

implementation using textual DSLs to control the visualisation of the 3D city model.

11 References

Barrientos, P., & Lopez, P. (2009). Developing DSLs using combinators. A design pattern.

International Multiconference on Computer Science and Information Technology, IEEE, (pp.

635-642).

Chafi, H., & al. (2010). Language Virtualization for Heterogeneous Parallel Computing. Proc of

ACM Int'l Conf. Object Oriented Programming Systems Languages and Applications (pp.

835-847). ACM Press.

Coors, V., & Krämer, M. (2011). Integrating quality management into a 3D geospatial server. 28th

Urban Data Management Symposium UDMS at 40 Years: Making Contributions to the

Future (pp. 7-12). International Society for Photogrammetry and Remote Sensing (ISPRS).

Doorenbos, R. B. (1995). Production Matching for Large Learning Systems.

Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern/many object pattern match

problem. Artificial Intelligence, 17-37.

Fowler, M. (2010). Domain-Specific Languages. Amsterdam: Addison-Wesley Longman.

Halpin, H., Hayes, P. J., McCusker, J. P., McGuinness, D. L., & Thompson, H. S. (2010). When

owl: sameas isn’t the same: An analysis of identity in linked data. The Semantic Webï

ISWC 2010, pp. 305 - 320.

Hudak, P. (1998). Modular domain specific languages and tools. Proceedings of the Fifth

International Conference on Software Reuse (pp. 134-142). IEEE Comput. Soc.

Irazabal, J., & Pons, C. (2010). Supporting Modularization in Textual DSL Development. XXIX

International Conference of the Chilean Computer Science Society (pp. 124-130). IEEE.

Janowicz, K., Scheider, S., Pehle, T., & Hart, G. (2012). Geospatial Semantics and Linked

Spatiotemporal Data - Past, Present, and Future. Semantic Web 3.4, pp. 321-332.

Rule User Interface Elements Documentation

54/54

Krämer, M. (2013). Internal report: Dissertation Proposal. Technical University of Darmstadt,

Fraunhofer IGD.

Krämer, M., Ludlow, D., & Khan, Z. (2013). Domain-specific rule languages for urban policy

modelling (To be submmitted). European conference on modelling and simulation.

Lee, H., Brown, K., Sujeeth, A., & al. (2011). Domain-specific Languages for Heterogeneous

Parallel Computing. IEEE Micro 31, vol. 5, pp. 42-53.

Mernik, M., Heering, J., & Sloane, A. (2003). When and how to develop domain-specific

languages. Unversity of Maribor, CWI Amsterdam, and Macquarie University.

Miranker, D. P. (1987). TREAT: A better match algorithm for AI production systems. Elements, 42-

47.

Nicola, A. D., Missikoff, M., & Navigli, R. (2009). A software engineering approach to ontology

building. Information Systems 34, pp. 258–275.

Perlis, A. (1982). Epigrams on Programming. Sigplan Notices 17, 9, 7-13.

Pizka, M., & Jürgens, E. (2007). Automating Language Evolution. First Joint IEEE/IFIP Symposium

on Theoretical Aspects of Software Engineering (TASE ô07) (pp. 305-315). IEEE.

Raskin, R. G., & Pan, M. J. (2005). Knowledge representation in the semantic web for Earth and

environmental terminology (SWEET). Computers & geosciences 31.9, pp. 1119-1125.

Reitz, T., Krämer, M., & Thum, S. (2009). A processing pipeline for X3D Earth-based spatial data

view services. Proceedings Web3D 2009: 14th International Conference on 3D Web

Technology (pp. 137-147). ACM Press.

Sohr, K., Ahn, G.-J., & Migge, L. (2005). Articulating and enforcing authorisation policies with UML

and OCL. In Proceedings of the 2005 workshop on Software engineering for secure

systemsðbuilding trustworthy applications (SESS '05), ACM, New York, NY, USA, pp. 1-7.

Sujeeth, A. K., & al. (2011). OptiML: An Implicitly Parallel Domain-Specific Language for Machine

Learning. Proc of the 28th Intôl Conf. Machine Learning (ICML 11) (pp. 609-616). ACM

Press.

Thum, S., & Krämer, M. (2011). Reducing Maintenance Complexity of User-centric Web Portrayal

Services. Proceedings Web3D 2011: 16th International Conference on 3D Web Technology

(pp. 165-172). ACM Press.

van Oosterom, P. (2009). Research and development in geo-information generalisation and

multiple representation. Computers, Environment and Urban Systems 33, 5, (pp. 303-310).

